Geotechnischer Bericht

zum

Projekt

Wohngebiet

Im Hochfeld I

Kiedrich

AZ.: 10 24 25

2. Bericht vom 04.06.2025

Erstattet von:

Institut für Geotechnik
Dr. Jochen Zirfas GmbH & Co. KG
Egerländer Straße 44
65556 Limburg

Tel.: 06431/2949-0 E-Mail: <u>info@ifg.de</u>

Auftraggeber:

Gemeinde Kiedrich Marktstraße 27 65399 Kiedrich

<u>Inhaltsverzeichnis</u>

1.0	Auftrag	6
2.0	Situation	7
3.0	Baugrund	10
3.1	Oberboden	11
3.2	Schluff	11
3.3	Kies	12
3.4	Ton	13
4.0	Bodenmechanische Laborversuche / Bodenkennwerte Lockergesteine	14
5.0	Wasserverhältnisse	15
6.0	Schlussfolgerungen und Empfehlungen	16
6.1	Baugrund- und Grundwassermodell	16
6.2	Bauwerksdaten	17
6.3	Baustelleneinrichtung	17
6.4	Aushubarbeiten	18
6.5	Wasserhaltung	20
6.6	Kanaltrasse	20
6.7	Stabilisierungsschicht	21
6.8	Rohrbettung	22
6.9	Hauptverfüllung	23
6.10	Leitungstrasse	26
7.0	Verkehrsflächen	27
7.1	Allgemeines	27
7.2	Stabilisierungsschicht	28
7.3	Verkehrsflächenaufbau	31
8.0	Qualitätskontrolle	34
9.0	Bodenklassen / Frostklassen / Homogenbereiche	35
10.0	Abfallrechtliche Deklaration	37
10.1	Probenzusammenstellung / Analytik	37

10.2	Untersuchungsergebnisse	38
10.3	Zusammenfassung der Untersuchungsergebnisse	39
11.0	Allgemeine Hinweise zum Probenahmeverfahren und zur Entsorgung	40
12.0	Schlussbemerkungen	42

Anlagenverzeichnis

1	Lageplan der Aufschlusspunkte, Maßstab 1: 1.000
2.1	Profilschnitt der Kleinbohrungen, Pegelausbau RKS 1, GMS 1, RKS 2, RKS 3,
	RKS 4, Maßstab 1:50
2.2	Profilschnitt der Kleinbohrungen RKS 5, RKS 15, RKS 14, RKS 13, RKS 12,
	Maßstab 1:50
2.3	Profilschnitt der Kleinbohrungen RKS 6, RKS 7, RKS 8, RKS 9, RKS 10, RKS 11,
	Maßstab 1:50
3.1.1	Wassergehalt nach DIN EN ISO 17892-1
3.1.2	Zustandsgrenzen nach DIN EN ISO 17892-12
3.1.3	Körnungslinie nach DIN EN ISO 17892-4
3.2.1	Wassergehalt nach DIN EN ISO 17892-1
3.2.2	Körnungslinie nach DIN EN ISO 17892-4
3.3.1	Wassergehalt nach DIN EN ISO 17892-1
3.3.2	Zustandsgrenzen nach DIN EN ISO 17892-12
4	Bestätigung der Kampfmittelfreiheit der Aufschlusspunkte, KMS
5	Probenahmeprotokolle nach LAGA M 32 PN 98 - Boden
6	Tabellarische Gegenüberstellung der Analysenergebnisse zu den
	Zuordnungswerten gemäß Ersatzbaustoffverordnung
7	Prüfberichte Dr. Graner & Partner GmbH

<u>Unterlagen</u>

Mitgeltende Fremdunterlagen

[FU 1] Städtebauliches Konzept zum Bebauungsplan "Wohngebiet

Hochfeld I", ISA Ingenieur für Städtebau und Architektur, ohne

Datum, Maßstab 1:5.000

[FU 2] Grobabsteckung, Vermessungsbüro Post + Gärtner vom 15.05.2025,

Maßstab 1: 1.000

Mitgeltende Unterlagen IfG

[U 1] Hydrogeologischer Bericht (1. Bericht) des IfG vom 15.11.2024

<u>Abkürzungen</u>

B(a)p Benzo(a)pyren (Einzelparameter der Σ PAK n. EPA)

EBV Ersatzbaustoffverordnung

EOX Extrahierbare organisch gebundene Halogene
EPA United States Environmental Protection Agency

EP Einzelprobe

GOK Geländeoberkante

MKW Mineralölkohlenwasserstoffe

MP Mischprobe

NB Natürlicher Boden

OK KD Oberkante Kanaldeckel

PAK Polyzyklische Aromatische Kohlenwasserstoffe

PCB Polychlorierte Biphenyle RKS Rammkernsondierung TOC Total Organic Carbon

Rechtliche Grundlagen

Mantelverordnung vom 09.07.2021:

Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung

Artikel 1 - Ersatzbaustoffverordnung, Stand: 13.07.23

Artikel 2 - Bundes-Bodenschutz- und Altlastenverordnung

Artikel 3 - Änderung der Deponieverordnung

> Artikel 4 - Änderung der Gewerbeabfallverordnung

LAGA M 32 PN 98: Länderarbeitsgemeinschaft Abfall (LAGA) M 32, Richtlinie für das

Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung /

Beseitigung von Abfällen, Stand: Mai 2019

Handlungshilfe M32: Länderarbeitsgemeinschaft Abfall (LAGA) M 32, Handlungshilfe

zur Anwendung der LAGA M 32 (LAGA PN 98), Stand: 05.05.2019

BBodSchG: Bundes-Bodenschutzgesetz vom 17.03.1998, Stand: 25.02.2021

GefStoffV: Verordnung zum Schutz vor Gefahrstoffen

(Gefahrstoffverordnung) Stand: 21.07.2021

1.0 Auftrag

Die Gemeinde Kiedrich erteilte mit Schreiben vom 23.04.2025 den Auftrag, eine Baugrunderkundung mit vorlaufender Kampfmittelsondierung zum geplanten Ausbau des Wohngebiets "Im Hochfeld I" in Kiedrich durchzuführen.

In dem Geotechnischen Bericht sind die erkundeten Baugrund- und Grundwasserverhältnisse darzustellen und die ergänzend durchgeführten bodenmechanischen Labor- und Grundwasseruntersuchungen auszuwerten.

Der zusammenfassende Bericht enthält geotechnische Angaben zur Leitungsbaumaßnahme sowie zum Straßenaufbau.

Weiterhin sollen die potentiell anfallenden Aushubmaterialien anhand der im Rahmen der geotechnischen Untersuchungen durchgeführten Bodenaufschlüsse in situ beprobt und abfallrechtlich deklariert werden.

2.0 Situation

Die Gemeinde Kiedrich beabsichtigt südöstlich des Ortszentrums die Erschließung des Wohngebiets "Im Hochfeld I" mit einer Fläche von ca. 4 ha. Das städtebauliche Konzept [FU 1] ist in nachstehender Abbildung dargestellt:

Planunterlagen zum Kanalbau lagen zum Zeitpunkt der Berichterstattung nicht vor.

Das Projektareal wird im Nordwesten von der Straße "Hochfeld" und im Nordosten von bebauten Grundstücken begrenzt. Südwestlich und südöstlich schließen landwirtschaftlich genutzte Flächen an.

Die Lage des Projektareals ist in nachstehendem Luftbild dargestellt:

Nachstehende Fotos zeigen die Situation vor Ort zum Zeitpunkt der Felduntersuchungen am 19. und 20.05.2025:

Die Untersuchungspunkte wurden nach Lage und Höhe eingemessen. Die Vermessungsarbeiten wurden durch das Vermessungsbüro Post + Gärtner durchgeführt [FU 2].

Die Geländehöhen im Bereich der Prüfpositionen liegen zwischen 178,37 mNN (RKS 1) und 185,18 mNN (RKS 6).

Das Gelände fällt in nördlicher Richtung um ca. 9 m ab [FU 1].

3.0 Baugrund

Um Aufschluss über die Baugrundverhältnisse am Projektstandort zu gewinnen, wurden folgende Bodenaufschlüsse ausgeführt:

Rammkernsondierungen: RKS 1, RKS 2, RKS 3, RKS 4, RKS 5, RKS 6, RKS 7,

RKS 8, RKS 9, RKS 10, RKS 11, RKS 12, RKS 13,

RKS 14 und RKS 15

Ein geplanter Bohrpunkt konnte aufgrund des dichten Bewuchses durch das Vermessungsbüro Post + Gärtner nicht ausgepflockt werden [FU 2] und wurde daher nicht ausgeführt.

Die Bohrung RKS 1 wurde zur Grundwassermessstelle GMS 1 ausgebaut. Die Lage der Messstelle wurde bauseits vorgegeben.

Vorlaufend zu den Bohrarbeiten wurden die Bohrpositionen auf Kampfmittelfreiheit geprüft. Die Auswertung der Kampfmittelräumfirma ist dem Bericht in der Anlage 4 beigefügt. Es wird an dieser Stelle explizit darauf hingewiesen, dass eine systematische Untersuchung des Baufeldes auf Kriegsaltlasten nicht erfolgte. Es sind somit rechtzeitig die erforderlichen gewerksspezifischen Kampfmitteluntersuchungen bauherrenseitig zu veranlassen.

Die Ansatzpunkte der Bodenaufschlüsse sind im Lageplan, Anlage 1 im Maßstab 1 : 1.000 eingetragen.

Die Aufzeichnungen der Bohrprofile der direkten Bodenaufschlüsse sind in Schnitten, Anlagen 2 im Maßstab 1:50 aufgetragen.

Nachfolgend erfolgt die detaillierte Beschreibung der erkundeten Bodenschichten hinsichtlich Vorkommen, Schichtstärken, Farbe und bodenmechanischer Feldansprache.

3.1 Oberboden

Als erste Schicht wurde ein teilweise aufgefüllter und teilweise natürlicher Oberboden in Form von sandigen, schwach tonigen und teilweise schwach kiesigen Schluffen aufgeschlossen. Anthropogene Inhaltsstoffe wurden in Form von Ziegel- und Polystyrolresten festgestellt.

Der dunkelbraun und braun gefärbte Oberboden wurde mit Mächtigkeiten zwischen 0,3 m und 0,5 m erkundet.

Die Liegendgrenze wurde zwischen ca. 178,1 mNN und ca. 184,9 mNN festgestellt.

3.2 Schluff

Als nachfolgendes Schichtglied wurden Schluffe mit schwach (fein)sandigen bis stark feinsandigen, schwach tonigen bis tonigen und teilweise schwach kiesigen bis kiesigen Nebengemengebestandteilen erbohrt.

Nach Atterberg (vgl. Anlage 3.1.2) ergibt sich für den Schluff die Bodengruppe TL im Übergangsbereich zu ST.

Die Ergebnisse einer exemplarischen Siebanalyse (vgl. Anlage 3.1.3) ergaben folgende Anteile der unterschiedlichen Bodenarten:

Ton: 16,3 %

Schluff: 67,5 %

Sand: 14,6 %

Kies: 1,6 %

Der braun und hellbraun gefärbte Schluff mit erbohrten Mächtigkeiten zwischen 0.9 m und 3.7 m weist eine steife bzw. steife bis halbfeste Konsistenz auf. Dies wird auch durch die ermittelte Konsistenz I_c von 1.06 (vgl. Anlage 3.1.2) bestätigt.

Die Liegendgrenze wurde mit Ausnahme der Bohrung RKS 12 zwischen ca. 176,7 mNN und ca. 183,7 mNN festgestellt. Im Aufschluss RKS 12 wurde bis zur geplanten Bohrendteufe von 4 m unter GOK kein Schichtwechsel verzeichnet.

3.3 Kies

Mit Ausnahme der Bohrungen RKS 1, RKS 6 und RKS 12 wurde im Liegenden der Schluffe ein Kies mit schwach bis stark schluffigen und sandigen bis stark sandigen Nebengemengebestandteilen erkundet.

Die Ergebnisse einer exemplarischen Siebanalyse (vgl. Anlage 3.2.2) ergaben folgende Anteile der unterschiedlichen Bodenarten:

Ton /Schluff: 18,2 %

Sand: 23,7 %

Kies: 58,0 %

Der braun und grau gefärbte Kies mit erbohrten Mächtigkeiten zwischen 0,5 m und 2,6 m ist mitteldicht bzw. mitteldicht bis dicht gelagert.

Die Liegendgrenze wurde – sofern erreicht – zwischen ca. 176,5 mNN und ca. 182,5 mNN erreicht.

3.4 Ton

Als abschließend erkundetes Schichtglied wurde Ton mit schluffigen, schwach sandigen bis sandigen und teilweise schwach (fein)kiesigen Nebengemengebestandteilen aufgeschlossen.

Nach Atterberg (vgl. Anlage 3.3.2) ergibt sich für den Ton die Bodengruppe TM im Übergangsbereich zu TA.

Der hellbraun und hellgrau gefärbte Ton mit erbohrten Mächtigkeiten zwischen 0.8 m und 2.3 m weist eine steife, steife bis halbfeste, halbfeste bzw. halbfeste bis feste Konsistenz auf. Dies wird auch grundsätzlich durch die ermittelte Konsistenz I_c von 0.96 (vgl. Anlage 3.3.2) bestätigt.

Die Liegendgrenze wurde bis zur geplanten Bohrendteufe von 4 m unter GOK nicht erreicht.

4.0 Bodenmechanische Laborversuche / Bodenkennwerte Lockergesteine

Zur Festlegung der maßgebenden bodenmechanischen Rechenwerte wurden Laborversuche durchgeführt.

Die einzelnen Prüfdaten können den Anlagen 3 entnommen werden.

Es wurden im Einzelnen folgende Bodenkennwerte ermittelt bzw.

Bodenkennwertzuordnungen in Anlehnung an DIN 1055/EAU/EAB sowie auf Grundlage von labortechnisch abgesicherten Erfahrungswerten vorgenommen:

 γ_k = Feuchtwichte (kN/m³)

 γ'_k = Wichte unter Auftrieb (kN/m³)

 φ'_k = Reibungswinkel (°)

 c'_k = Kohäsion (kN/m²)

Schicht	KZ	γk	γ ′ k	φ ′κ	C' _k
		(kN/m³)	(kN/m³)	(°)	(kN/m²)
Oberboden	OH/[OH]	18,0	8,0		
Schluff	TL/TM/SŪ	19,5	9,5	27,5	10
Kies	GU/GŪ	21,0	11,0	35,0	0
Ton	TM/TA	20,0	10,0	25,0	15

5.0 Wasserverhältnisse

Wasser in tropfbar flüssiger Form wurde nicht festgestellt. In den Kiesen kann sich ein durch infiltrierendes Niederschlagswasser gespeister, schwebender Grundwasserleiter ausbilden.

Aufgrund der Hanglage muss nach Perioden mit höheren Niederschlagsraten mit dem Auftreten von Schicht- und Stauwasserhorizonten ab GOK gerechnet werden. Die Fließrichtung verläuft entsprechend der allgemeinen Geländeneigung.

Das Projektareal befindet sich außerhalb eines Wasserschutzgebiets.

6.0 Schlussfolgerungen und Empfehlungen

6.1 Baugrund- und Grundwassermodell

Die ausgewerteten Bodenaufschlüsse sowie die auf Grundlage der Feldansprache durchgeführte bodenmechanische Bewertung ergeben folgendes Baugrundmodell mit Tragfestigkeitszuordnung:

Schicht	Schichtunterkante	Tragfähigkeit
	[mNN]	
Oberboden	ca. 178,1 – 184,9	keine
Schluff	ca. 176,7 – 183,7 / nicht erreicht	mittel
Kies	ca. 176,5 – 182,5 / nicht erreicht	gut
Ton	nicht erreicht	mittel bis gut

Schicht- und Stauwasser kann in Abhängigkeit von Niederschlagsereignissen ab Geländeoberkante auftreten.

6.2 Bauwerksdaten

Bislang liegen keine Planunterlagen hinsichtlich des Kanaldurchmessers sowie der Verlegetiefe vor. Es wird von einer Verlegetiefe von ca. 2 m bis ca. 3 m unter GOK ausgegangen.

Auch für Wasserleitungen liegen keine Angaben vor. Es wird von einer frostfreien Verlegetiefe von ca. 0,8 m unter GOK ausgegangen.

6.3 Baustelleneinrichtung

Die bestehenden Verkehrsflächen zum Wohngebiet sind ausreichend tragfest, um die Baustellenandienung zu gewährleisten. Es ist jedoch darauf zu achten, dass – bei gegebenenfalls auftretenden Verschlammungen – regelmäßig eine Säuberung erfolgen muss.

Auf dem Grundstück selbst sind Bereitstellungsflächen und Baustraßen herzustellen. Dazu ist der Oberboden vollständig abzuschieben. Anschließend ist ein Vlies der Stärke 300 g/m^2 zu verlegen und mit einer Schottertragschicht der Körnung 0/32 oder – nach vorlaufender Abstimmung mit der zuständigen Behörde – mit RCL-Material mit vergleichbarer Zertifizierung mit d $\geq 0,4$ m zu belegen. Bei nasser Witterung kann eine Verstärkung der Schotterschicht auf d $\geq 0,6$ m erforderlich werden.

6.4 Aushubarbeiten

Für Verlegetiefen von ≤ 1,25 m ist nach den Vorgaben der DIN 4124 ein senkrechtes Böschen der Grabenwände zulässig. Sofern Kiesschichten angeschnitten werden, kann es zu Ausbrüchen kommen.

Sofern die Aushubtiefe unter 1,75 m liegt, ist ein senkrechter Graben in Verbindung mit einer Kopfböschung nach DIN 4124 zulässig.

Für größere Aushubtiefen erlauben die Platzverhältnisse am Projektstandort ein freies Abböschen der Kanalgrabenwände nach den Empfehlungen der DIN 4124 unter Einhaltung folgender Böschungsneigungen:

- Schluff < 60°
- Kies <u><</u> 45°
- Ton < 60°

Bis zu einer freien Böschungshöhe von 5 m können die Böschungen unter Berücksichtigung der Vorgaben der DIN 4124 ohne gesonderten Standsicherheitsnachweis hergestellt werden.

Bei austretendem Schichtwasser innerhalb der Böschung ist zu erwarten, dass sich lokal Böschungsausbrüche einstellen.

In diesem Fall ist das anstehende Material zur Stabilisierung prismenförmig auszukoffern und durch Grobschottermaterial der Körnung 0/150 in einer Stärke von mindestens 50 cm am Fußpunkt zu ersetzen.

Alle Böschungsflächen sind zum Schutz gegen Witterungseinflüsse dauerhaft durch eine witterungsbeständige Folie zu sichern, welche sowohl im Kopf- als auch im Fußbereich zu befestigen ist.

Zur Minimierung der Aushubkubatur können in den vorübergehend standfesten Böden im freien Gelände nach dem Grabenaushub Grabenverbaugeräte zur Sicherung senkrecht hergestellter Grabenböschungen im Einstellverfahren nach DIN 4124 eingesetzt werden. Hierbei kann es in den kiesigen Partien zu seitlichem Nachfall kommen, welcher jedoch im freien Gelände akzeptiert werden kann. Ein kraftschlüssiger Verbund zwischen Erdreich und Grabenverbaugerät muss gewährleistet sein.

Als wirtschaftliches und sicheres System wird der Einsatz eines GleitschienenVerbaugerätes vorgeschlagen. Die Verwendungsanleitung des Herstellers ist zu
beachten. Der Vorteil des Gleitschienenverbaus besteht darin, dass durch die
Großflächenwandelemente große Wandabschnitte mit geringem Zeitaufwand verbaut
werden können. Beim Einsatz des Gleitschienenverbaus ist darauf zu achten, dass
dieser in Bereichen mit den Trassenverlauf querenden Leitungen oder
Hausanschlüssen nachträglich ausgeführt werden muss. Diese Bereiche sind
zweckmäßigerweise durch einen Normverbau nach DIN 4124 zu sichern.

Sofern sich systembedingte Überstände der Verbauelemente über Gelände ergeben, sind diese Erschwernisse durch die ausführende Firma einzukalkulieren.

Das Grabenverbaugerät ist sukzessive mit der Grabenverfüllung abschnittsweise rückzubauen.

Für die statische Berechnung des Verbausystems gelten die Vorgaben der EAB. Hierbei sind auch die im Umfeld verlaufenden Bestandsleitungen zu berücksichtigen.

Für die erdstatischen Nachweise können die Bodenkennwerte gemäß Kapitel 4.0 aus dem vorliegenden Geotechnischen Bericht eingesetzt werden.

6.5 Wasserhaltung

Je nach Zeitpunkt der Baumaßnahme kann es zu einem unterschiedlichen
Wasserzutritt in den Gräben kommen. Das Wasser ist über Baudränagen kontrolliert zu
fassen und über eine offene Wasserhaltung aus dem Bauareal abzuleiten.

Bei Wasseraustritten aus dem Kies sind diese ausbluten zu lassen; das Wasser ist gemäß den oben stehenden Empfehlungen aus dem Baufeld zu entfernen.

Es obliegt der bauausführenden Firma, eine ordnungsgemäße Tagwasserhaltung zu betreiben. Hierbei handelt es sich um eine kostenfreie Nebenleistung nach VOB, Teil C, DIN 18299, Kapitel 4.

6.6 Kanaltrasse

Für die Verlegung erdverlegter Abwasserleitungen und –kanäle gilt grundsätzlich die Euronorm EN 1610. Ergänzende Hinweise zur Anwendung dieser Norm enthält das Arbeitsblatt DWA-A 139 (3/2019).

6.7 Stabilisierungsschicht

Bei den vorliegenden Untergrundverhältnissen ist die Ertüchtigung der Grabensohle durch den Einbau einer Rohrbettstabilisierungsschicht vorzusehen, wodurch normale Bodenverhältnisse und eine standfeste Unterlage geschaffen werden können.

Die Stärke der Rohrbettstabilisierungsschicht ist in nachstehender Tabelle für die unterschiedlichen Bodenarten aufgeführt.

Bodenart	Stärke der Stabilisierungsschicht
Schluff	≥ 0,2 m
Kies	≥ 0,1 m *1
Ton	≥ 0,15 m

^{*1} in niederschlagsfreien Perioden ist eine Nachverdichtung der Kiese mittels Grabenstampfgerät ausreichend, um normale Bodenverhältnisse zu erreichen

Sollten die bindigen Böden auf der Aushubsohle aufgeweicht sein, ist die Rohrbettstabilisierungsschicht zu verstärken, mit Vlies der Stärke 200 g/m² zu ummanteln und an den Grabenwänden hochzuführen.

Es wird die Verwendung von gebrochenem Natursteinmaterial der Körnung 0/32 oder – nach Abstimmung mit der zuständigen Behörde – aus gleichwertigem RCL-Material empfohlen. Sofern dem Einbau von RCL-Material behördlicherseits zugestimmt wird und dieses zum Einsatz kommen sollte, muss das Material den Vorgaben für Kies- und Schottertragschichten der TL-SoB-StB 20 sowie den Vorgaben der TL Gestein-StB 04/23, Anhang B, Tabelle B 1 hinsichtlich der Zusammensetzung entsprechen.

Ein Befahren des Bauplanums mit schwerem Arbeitsgerät ist nicht zulässig. Ansonsten besteht die Gefahr, dass durch die dynamische Fahrzeugbeanspruchung das Bodenwasser mobilisiert wird und die bindigen Erdstoffe verbreien.

Die Aushubsohle ist vorlaufend zum Einbau der Stabilisierungsschicht durch die geotechnische Fachbauleitung zu begutachten.

6.8 Rohrbettung

Die Rohrbettung darf nach DIN EN 1610 ausgeführt werden. Es liegen – nach Einbau der in Kapitel 7.4 aufgeführten Stabilisierungsschicht – normale Bodenverhältnisse vor. Die Bettungsschicht a) ist in einer Mindeststärke von 0,1 m auszuführen. Um die Gefahr von Schäden und Setzungen zu reduzieren, sollte in Übereinstimmung mit dem Arbeitsblatt DWA-A 139 die Schichtstärke in Abhängigkeit des Rohrdurchmessers auf den Wert

$$a = 100 \text{ mm} + 1/10 \text{ DN in mm}$$

vergrößert werden.

Die obere Bettungsschicht b) ist in der nach der Rohrstatik erforderlichen Stärke unter Berücksichtigung des gewählten Auflagerwinkels auszubilden.

Sofern vom Rohrhersteller keine speziellen Materialanforderungen gestellt werden, wird für die Herstellung der Bettungsschichten a) und b) die Verwendung folgender Materialien vorgeschlagen:

- Kiessand 0/16 (alle Nennweiten)
- Brechsand-Splitt-Gemisch 0/11 (bis DN 900)

Alternativen sind im Rahmen der normativen Grenzrandbedingungen wählbar.

Für die Verfüllung der Leitungszone oberhalb der Bettungsschichten wird empfohlen, beiderseits der Rohrleitung bis zu einer Höhe von 0,15 m über Rohrscheitel bzw.

0,10 m über den Muffen das zur Herstellung der Bettungsschicht eingesetzte Material zu verwenden.

Das Schüttgut ist in Lagen von max. 0,3 m Stärke einzubauen und mit leichten maschinellen Geräten oder manuell zu verdichten. Für die zum Einsatz in der Rohrleitungszone vorgeschlagenen Baustoffe gilt nach ZTV E-StB 17 ein Verdichtungsgrad von mindestens 97 %.

Bei den Verdichtungsarbeiten ist darauf zu achten, dass die Leitung nicht nach der Seite oder Höhe hin verschoben wird.

6.9 Hauptverfüllung

Für die Hauptverfüllung wird die Verwendung der in nachstehender Tabelle aufgeführten Bodengruppen empfohlen; diese Materialien sind anzuliefern. Das Schüttgut ist unter sukzessivem Ziehen der Verbaukonstruktion oder verzahnt gegen die Böschung einzubauen und dynamisch zu verdichten.

Es gelten folgende Verdichtungsanforderungen bis 0,5 m unter Planum:

Bodengruppe nach DIN 18196	Verdichtungsgrad	E _{v2} [MN/m ²]	E _{vd} [MN/m ²]
GW, GI,	≥ 98 % D _{Pr}	80	40
GE, SW, SE, SI	≥ 98 % D _{Pr}	70	40
GU, GT, SU, ST	≥ 98 % D _{Pr}	_*)	_*)

Referenzwerte können durch Kalibrierversuche ermittelt werden, ansonsten sind direkte Prüfmethoden einzusetzen.

Darüber gelten bis auf Höhe des Planums folgende Anforderungen:

Bodengruppe nach DIN 18196	Verdichtungsgrad	E _{v2} [MN/m²]	E _{vd} [MN/m²]	
GW, GI,	≥ 100 % D _{Pr}	100	50	
GE, SW, SE, SI	≥ 100 % D _{Pr}	80	50	

Ergänzend dazu sind folgende Verdichtungsverhältnisse bei Durchführung statischer Plattendruckversuche nachzuweisen:

$$D_{pr} \ge 98 \% = E_{v2} / E_{v1} \le 2,5$$

$$D_{pr} \ge 100 \% = E_{v2} / E_{v1} \le 2,3$$

Alternativ kann die Hauptverfüllung mit den ausgehobenen natürlichen Böden ausgeführt werden, sofern die Aushubmaterialien durch Zugabe von Bindemittel verbessert und steinige Anteile separiert werden. Für die Arbeiten gelten die allgemeinen Grundsätze des Merkblattes über Bodenbehandlungen mit Bindemittel, Ausgabe 2021 sowie der ZTV E-StB 17.

Die Aushubmaterialien müssen oberflächenwassersicher bereitgestellt werden. Vorlaufend zum Einbau ist ein geeignetes Bindemittel homogen in das Aushubmaterial einzuarbeiten. Im Kanalbau hat sich die Verwendung eines Schaufelseparators für die Herstellung des Boden-Bindemittel-Gemisches bewährt. Das konditionierte Material ist innerhalb des zulässigen Verarbeitungszeitraums in Lagen d \leq 0,2 m und mit einer Verdichtungsleistung von $D_{Pr} \geq 97$ % sowie einem Luftporengehalt $n_a \leq 12$ Vol.-% einzubauen.

Vorbehaltlich der Ergebnisse einer bodenmechanischen Eignungsprüfung wird aufgrund der bereits vorliegenden Erkenntnisse zum Boden und allgemeiner Erfahrungswerte folgende Bindemittelauswahl und Abschätzung zur voraussichtlichen Dosierung empfohlen:

Bindemittelart: MischbinderVerhältnis Kalk/Zement: 70% / 30 %

- Dosiermenge: i.M. 3 % (ca. 54 kg/m³)

Die umweltrechtlichen Vorgaben zum Wiedereinbau sind zu beachten und einzuhalten.

6.10 Leitungstrasse

Für die Aushubarbeiten gelten die Vorgaben aus Kapitel 6.4.

Für die Verlegung erdverlegter Wasserleitungen gilt grundsätzlich die DIN EN 805. Ergänzende Hinweise zur Anwendung dieser Norm enthält das Arbeitsblatt DVGW-W 400.

Es wird davon ausgegangen, dass die Leitungssohle in den Schluffen verläuft.

Daher wird eine untere Bettungsschicht mit einer Stärke von d \geq 0,2 m empfohlen. Bei aufgeweichten Verhältnissen ist die Bettungsschicht zu verstärken. Die bindigen Böden sind mit einem Löffel mit aufgesetzter Schneide glatt abzuziehen.

Es wird die Verwendung von gebrochenem Natursteinmaterial der Körnung 0/32 oder – nach Abstimmung mit der zuständigen Behörde – aus gleichwertigem RCL-Material empfohlen. Sofern dem Einbau von RCL-Material behördlicherseits zugestimmt wird und dieses zum Einsatz kommen sollte, muss das Material den Vorgaben für Kies- und Schottertragschichten der TL-SoB-StB 20 sowie den Vorgaben der TL Gestein-StB 04/23, Anhang B, Tabelle B 1 hinsichtlich der Zusammensetzung entsprechen.

Die Aushubsohle ist vorlaufend zum Einbau der Bettungsschicht durch die geotechnische Fachbauleitung zu begutachten.

Die Verlegeanweisungen des Herstellers zur Bettungsschicht sind einzuhalten.

Die Hauptverfüllung muss nach den Vorgaben gemäß Kapitel 6.9 erfolgen.

7.0 Verkehrsflächen

7.1 Allgemeines

Das erkundete Grundplanum besteht gemäß der Bodenansprache aus Schluffen der Bodengruppe TL und untergeordnet TM bzw. SŪ. Aufgrund der Feinkornanteile ist die Frostempfindlichkeitsklasse F 3 nach ZTV E-StB 17 anzusetzen.

Entsprechend der Frostempfindlichkeit des Planums, der regionalen Lage des Standortes und der zu erwartenden Verkehrsbelastung ergibt sich der erforderliche frostsichere Straßenaufbau wie folgt:

Belastungsklasse nach RStC	Bk3,2 - Bk1,0	Bk0,3	
Mindeststärke des frostsich	Mindeststärke des frostsicheren Straßenaufbaus [cm]		
Mehr- und Minderstärken	Frosteinwirkung	<u>+</u> 0	<u>+</u> 0
nach RStO 12/24	Kleinräumige Klimaunterschiede	<u>+</u> 0	<u>+</u> 0
aufgrund der örtlichen	Wasserverhältnisse	<u>+</u> 0	<u>+</u> 0
Verhältnisse	Lage der Gradiente	<u>+</u> 0	<u>+</u> 0
[cm] Entwässerung der Fahrbahn		- 5	-5
Stärke des frostsicheren Ob	55	45	

Gemäß Abschnitt 5.2 (Geh- und Radwege) der RStO 12/24 beträgt für Böden der Frostempfindlichkeitsklasse F 3 die Mindeststärke des frostsicheren Oberbaus 30 cm.

7.2 Stabilisierungsschicht

Die Planumssohle liegt gemäß den Aufschlüssen in den Schluffen, welche keine ausreichende Grundtragfestigkeit von $E_{v2} \ge 45 \text{ MN/m}^2$ aufweisen. Daher werden zusätzliche Maßnahmen erforderlich.

Hydraulische Stabilisierung

Zum Erreichen eines Tragfestigkeitswerts von $E_{v2} \ge 45$ MN/m² auf dem Planum wird eine hydraulische Bodenstabilisierung empfohlen. Für die Arbeiten gelten die allgemeinen Grundsätze des Merkblattes Bodenbehandlungen mit Bindemittel, Ausgabe 2021 sowie der ZTV E-StB 17.

Dies setzt allerdings voraus, dass die Erdarbeiten zur Planumsertüchtigung in einer Witterungsperiode ohne Frosteinwirkungen (Temperaturen ≥ 5° C) realisiert werden können. Bevorzugt sind niederschlagsarme Witterungsperioden zu wählen, um auch witterungsbedingte Zusatzaufwendungen bei der hydraulischen Bodenstabilisierung auf ein Minimum zu begrenzen.

Ausgehend von den Ergebnissen der bodenmechanischen Laboruntersuchungen wird zur Planumsertüchtigung die erforderliche Bindemittelzugabemenge derzeit auf 2 % bis 4 % abgeschätzt. Dieser Wert ist im Zuge einer Eignungsprüfung genau bestimmen zu lassen.

Kalkulativ sollte von einer Zugabemenge des Bindemittels von durchschnittlich 3 % für Massenermittlungen ausgegangen werden. Dies entspricht einer Dosiermenge von rd. 54 kg/m³.

Zur Gewährleistung einer ausreichenden Grundtragfähigkeit wird im Regelfall eine Stabilisierungstiefe von 0,4 m ausreichend sein. Somit ergibt sich eine Streumenge von im Mittel 22 kg/m².

In niederschlagsreichen Perioden, in welchen die Schluffe aufweichen können, wird eine zweilagige Stabilisierung erforderlich. In diesem Fall ist bis 0,4 m unter Planumsniveau auszukoffern, die Aushubsohle hydraulisch zu stabilisieren und das ausgekofferte Material on-site unter Zugabe von Bindemittel wieder einzubauen.

Das Bindemittel ist in der vorgegebenen Menge mit einem Dosierwagen aufzubringen und anschließend mit einer Hochleistungsfräse homogen unterzumischen. Aufgrund der angrenzenden Bebauungen wird ein staubarmes Verfahren empfohlen.

Die endgültigen Streumengen sind auf die örtlichen Bodenverhältnisse sowie die Witterungsverhältnisse im Ausführungszeitraum abzustimmen. Gegebenenfalls ist auch eine Wasserzugabe vorzusehen.

Bei der Herstellung des Planums sind die Vorgaben der REwS hinsichtlich der Entwässerungsplanung des nicht gebundenen Oberbaus zu berücksichtigen.

Die Bauabläufe sind so zu koordinieren, dass eine Frostbeanspruchung von behandelten Flächen unterbunden wird, da ansonsten mit einem Verlust der Tragfestigkeit und Widerstandsfähigkeit gerechnet werden muss.

Auf der Oberfläche des stabilisierten Planums ist je 1.000 m² ein Tragfestigkeitswert $E_{v2} \ge 45 \text{ MN/m}^2$ nachzuweisen.

Liefermaterial

Alternativ werden bodenverbessernde Maßnahmen in Form einer Stabilisierungsschicht aus gebrochenem Natursteinmaterial der Körnung 0/45 oder − nach vorlaufender Abstimmung mit der zuständigen Behörde − aus gleichwertigem RCL-Material mit Regelsieblinie in einer Stärke von d ≥ 0,4 m empfohlen. Sofern dem Einbau von RCL-Material behördlicherseits zugestimmt wird und dieses eingebaut werden sollte, muss das Material den Vorgaben für Kies- und Schottertragschichten der TL SoB-StB 20 sowie den Vorgaben der TL Gestein-StB 04/23, Anhang B, Tabelle B 1 hinsichtlich der Zusammensetzung entsprechen.

Bei schlechten Witterungsverhältnissen bzw. einem aufgeweichten Planum ist die Stabilisierungsschicht auf d \geq 0,6 m zu erhöhen und zuvor ein Geotextil (300 g/m²) mit einer Überlappung der Bahnen von 0,4 m zu verlegen.

Es wird nach Herstellung des Planums empfohlen, Probefelder anzulegen, auf welchen statische Plattendruckversuche nach DIN 18134 durchzuführen sind.

Auf der Stabilisierungsschicht ist ein Verformungsmodul von $E_{v2} \ge 45$ MN/m² mittels statischer Plattendruckversuche nachzuweisen.

7.3 Verkehrsflächenaufbau

Ausgehend von einer Grundtragfestigkeit von $E_{v2} \ge 45 \text{ MN/m}^2$ kann der Aufbaugrundsätzlich nach RStO '12/24 erfolgen.

<u>Ungebundener Oberbau</u>

Die Frostschutz- / Tragschichten bzw. Stabilisierungsschicht sind aus gebrochenem Natursteinmaterial der Körnung 0/32 oder 0/45 oder – nach vorlaufender Abstimmung mit der zuständigen Behörde – aus gleichwertigem RCL-Material aufzubringen. Sofern dem Einbau von RCL-Material behördlicherseits zugestimmt wird und dieses eingebaut werden sollte, muss das Material den Vorgaben für Kies- und Schottertragschichten der TL SoB-StB 20 sowie den Vorgaben der TL Gestein-StB 04/23, Anhang B, Tabelle B 1 hinsichtlich der Zusammensetzung entsprechen.

Unter gepflasterten Flächen wird die Verwendung von RCL-Materialien als Tragschicht grundsätzlich nicht empfohlen, da die Wasserwegsamkeit durch Sekundärverfestigungseffekte über die Zeit stark vermindert wird.

Im Falle eines Einsatzes von Rundkornmaterial mit Regelsieblinie sind die vorgenannten Tragschichtstärken um 0,1 m zu erhöhen.

Gebundener Oberbau

Für die Herstellung bituminöser Trag- und Deckschichten gelten die Vorgaben der TL Asphalt StB 07 und der ZTV Asphalt StB 07.

Beim Einsatz von Verbundsteinpflaster ist sorgfältig darauf zu achten, dass die Frostschutz- und Tragschichten mit einer Ebenflächigkeit von ± 1 cm, bezogen auf die 4-m-Richtlatte, hergestellt werden.

Weiterhin ist sorgfältig darauf zu achten, dass die Kornabstufung des Frostschutz- und Tragschichtmaterials den vorgegebenen Sieblinien entspricht, da ansonsten bei einem Defizit des Feinkornanteils Material der Pflasterbettung abwandern kann.

Die Pflasterbettung ist in einer gleichmäßigen Schichtstärke von maximal 4 cm aufzubringen und unter Wasserzugabe auf $D_{Pr} \geq 100$ % der einfachen Proctordichte nach Auflage der Pflastersteine zu verdichten. Es wird hier die Körnung 0/5 empfohlen. Die Pflasterfugen sind mit Material der Körnung 0/2 auszuschlämmen.

Das Pflaster ist nach Fertigstellung einer kontinuierlichen Wartung zu unterziehen, ggf. ist ein Nachsanden zu veranlassen. Bei Pflasterbauweisen sind zusätzlich die Vorgaben der ZTV Pflaster-StB 20 zu beachten.

Der Durchlässigkeitsbeiwert des Untergrundes liegt unterhalb der Anforderungen des Merkblattes MVV, welches für die Planung und Ausführung wasserdurchlässiger Beläge Gültigkeit besitzt. In diesem Merkblatt wird eine Mindestdurchlässigkeit unter Laborbedingungen von $k_f = 5.4 \times 10^{-5}$ m/s gefordert.

Sofern dennoch wasserdurchlässige Belagarten geplant werden sollten, muss berücksichtigt werden, dass dies erhebliche Eingriffe in den Untergrund nach sich zieht, da dann unterhalb des wasserdurchlässigen Verkehrsflächenaufbaus ein Unterbau aus durchlässigem Material ausgeführt werden muss, dessen Schüttkörperbasis mindestens 2 m unter der Belagoberkante liegt (siehe Merkblatt MVV, Bild 1):

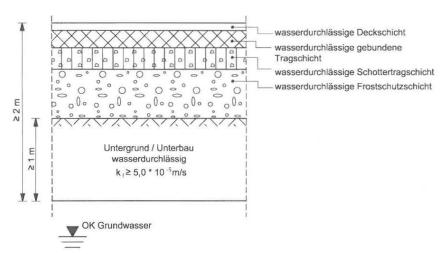


Bild 1: Schematische Darstellung einer versickerungsfähigen Befestigung

Die Vorgaben der REwS sind bei der Entwässerungsplanung des nicht gebundenen Oberbaus zu berücksichtigen.

8.0 Qualitätskontrolle

Durch die ausführende Firma ist für die Leitungsverfüllung sowie den Verkehrsflächenaufbau eine Eigenüberwachung gemäß ZTV E-StB 17 durchzuführen.

Weiterhin wird eine Fremdüberwachung zur stichprobenartigen Kontrolle empfohlen. Für die Verfüllung der Leitungstrasse sowie den Verkehrsflächenaufbau sollten je 50 m Kontrollprüfungen durch den Fremdüberwacher erfolgen.

9.0 Bodenklassen / Frostklassen / Homogenbereiche

Nach DIN 18300 (Erdarbeiten) ergibt sich folgende Bodenklassifikation:

Bodenarten	Bodenklassen nach DIN 18300
Oberboden	1
Schluff	4 *1
Kies	3 bis 4
Ton	4 bis 5

^{*1} bei Schicht- und Stauwasser kann auch die Bodenklasse 2 vorliegen

Die im Baubereich anstehenden Böden sind nach ZTV E-StB 17 hinsichtlich der Frostempfindlichkeit wie folgt einzustufen:

Bodenarten	Frostempfindlichkeitsklassen nach ZTV E-StB 17
Oberboden	
Schluff	F 3
Kies	F 2 bis F 3
Ton	F 2

F 1 - nicht frostempfindlich

Insbesondere bei Winterbaustellen sind die entsprechenden Zusatzmaßnahmen zur Sicherung der Planums- und Gründungsflächen zu beachten.

nahmen zur Sicherung der Planums- und Gründungsflächen zu beachten.

F 2 - gering bis mittel frostempfindlich

F 3 - sehr frostempfindlich

Sofern die Ausschreibung der Erdarbeiten nach DIN 18300:2019-09 erfolgen soll, sind die bei den Erdarbeiten anfallenden bzw. zu bearbeitenden Böden aufgrund vergleichbarer Eigenschaften zu einem Homogenbereich zusammenzufassen. Die wesentlichen geotechnischen Eigenschaften sind dann mit folgenden Merkmalen anzugeben:

Homogenbereich	I	II	III	IV
Bezeichnung	Oberboden	Schluff	Kies	Ton
Bodengruppe (DIN 18196)	OH/[OH]	TL/TM/SŪ	GU/GŪ	TM/TA
Massenanteil	X: < 5 %	X: < 5 %	X: < 15 %	X: < 10 %
Steine, Blöcke und große Blöcke	Bo: 0 %	Bo: 0 %	Bo: < 5 %	Bo: < 5 %
(DIN EN ISO 14688-1)	LBo: 0 %	LBo: 0 %	LBo: < 2 %	LBo: < 2 %
	T: 5 - 15 %	T: 5 - 25 %	T: 0 - 5 %	T: 55 - 75 %
Korngrößenverteilung	U: 55 - 70 %	U: 50 - 75 %	U: 10 - 30 %	U: 15 - 25 %
(DIN EN ISO 17892-4)	S: 15 - 25 %	S: 10 - 35 %	S: 15 - 35 %	S: 5 - 20 %
	G: 0 - 15 %	G: 0 - 20 %	G: 50 - 70 %	G: 0 - 10 %
Feuchtdichte (DIN EN ISO 17892-2; DIN 18125-2)	1,8 t/m³	1,9 - 2,0 t/m³	2,0 - 2,1 t/m³	2,0 t/m³
Undränierte Scherfestigkeit (DIN 4094-4, DIN EN ISO 17892-7; DIN EN ISO 17892-8)	-	15 - 200 kN/m²	-	150 - 300 kN/m²
w (DIN EN ISO 17892-1)	10-40 %	15 - 30 %	0 - 10 %	15 - 30 %
I _P (DIN EN ISO 17892-12)	-	0 - 15 %	-	20 - 35 %
I _C (DIN EN ISO 17892-12)	-	0,2 - > 1,0	-	0,5 - > 1,0
I _D (DIN EN ISO 14688-2; DIN 18126)	-	-	40 - 75 %	-
Organischer Anteil (DIN 18128)	< 10 %	< 5 %	< 3 %	< 3 %

Hierin sind:

 ρ = Feuchtdichte (t/m³)

c_{u,k} = undränierte Scherfestigkeit (kN/m²)

w = Wassergehalt (%)

I_P = Plastizitätszahl (%)

I_C = Konsistenzzahl

I_D = bezogene Lagerungsdichte (%)

Es handelt sich vorstehend nicht um charakteristische Kenndaten im Sinne der DIN EN 1997.

10.0 Abfallrechtliche Deklaration

10.1 Probenzusammenstellung / Analytik

Zur abfallrechtlichen Einstufung der beim Aushub anfallenden Bodenmaterialien wurden – unter Berücksichtigung der organoleptischen Ansprache – die in Kapitel 10.2 tabellarisch aufgeführten Proben zusammengesetzt und von dem akkreditierten Vertragslabor des IfG, Dr. Graner & Partner GmbH, gemäß dem in der EBV, Anlage 1, Tabelle 3, Spalte 6 festgelegten Untersuchungsumfang untersucht.

Die Gewinnung der Bodenproben erfolgte im Aufschlussverfahren nach DIN 4021.

Die Durchführung der Probenahme sowie die Probenmenge und Vorbereitung der Einzel- und Mischproben zur Laborprobe erfolgte nach den Richtlinien der *LAGA M 32 PN 98.*

Die Probenahmeprotokolle nach LAGA M 32 PN 98 liegen dem Bericht in der Anlage 5 bei.

Es bestand grundsätzlich kein weiterer Verdacht auf spezifische, nutzungs- oder immissionsbedingte Schadstoffbelastungen, sodass keine Notwendigkeit vorlag, den Untersuchungsumfang um ergänzende, nicht in den Tabellen der Anlage 6 enthaltene Parameter zu erweitern.

10.2 Untersuchungsergebnisse

Die Laborergebnisse sind in den Tabellen der Anlage 6 den in der EBV definierten Zuordnungswerten gegenübergestellt.

Die entsprechenden Prüfberichte des Labors sind dem Bericht in der Anlage 7 beigefügt.

In nachfolgender Tabelle sind die aus den Analysenergebnissen resultierenden, abfallrechtlichen Einstufungen dargestellt:

<u>Tabelle 10.2-1: Abfallrechtliche Einstufungen – Boden Bauschuttanteil ≤ 50%</u>

Probe	Aus Auf-	Tiefe	Abfalleinstufung gemäß <i>EBV, Anlage 1, Tab. 3</i>							Abfall- einstufende
	schlüssen	m u GOK	BM-0	BM-0*	BM-F0*	BM-F1	BM-F2	BM-F3	> BM-F3	<u>Parameter</u>
NB 1	1/2 - 1/4 2/2 - 2/4 3/2 - 3/4 4/2 - 4/4 5/2 - 5/4 13/2 - 13/4 14/2 - 14/4 15/2 - 15/4	0,3 - 3,0 0,3 - 3,4 0,3 - 3,2 0,5 - 3,0 0,3 - 2,7 0,4 - 3,2	х							
NB 2	6/2 - 6/4 7/2 - 7/4 8/2 - 8/4 9/2 - 9/4 10/2 - 10/4 11/2 - 11/4 12/2 - 12/4	0,3 - 2,4 0,3 - 3,2 0,3 - 3,0 0,3 - 3,0 0,3 - 3,0	х							

F: Feststoff E: Eluat

10.3 Zusammenfassung der Untersuchungsergebnisse

Für die gemäß den **Vorgaben der** *Ersatzbaustoffverordnung* untersuchten Proben wurden folgende Ergebnisse ermittelt:

Probe NB 1 BM-0

Probe NB 2 BM-0

Annahmespezifisch abweichender Parameterumfang

Aufgrund betriebseigener, zulassungsbedingt vorgeschriebener
Annahmekriterien der für die Andienung in Frage kommenden Deponiebetriebe /
Verwertungsstellen kann es erforderlich werden, weitere Parameter zu
analysieren. Die für die Annahmestellen jeweils vorgeschriebenen Grenzwerte
sind einzuhalten.

11.0 Allgemeine Hinweise zum Probenahmeverfahren und zur Entsorgung

Bei der Entsorgung von Materialien im Sinne einer Verwertung vor Ort oder außerhalb des Projektareals oder einer Ablagerung auf einer Deponie sind die genannten geltenden Vorschriften bzw. die zum Zeitpunkt der Baumaßnahme dann gültigen abfallrechtlichen Vorschriften zu beachten.

<u>Probenahmeverfahren</u>

Grundsätzlich wird seitens der Annahmestellen die abfallrechtliche Deklaration aus In-situ-Beprobungen für die fachgerechte Entsorgung akzeptiert. Im Einzelfall kann allerdings eine Deklarationsanalyse aus einer Haufwerksbeprobung gefordert werden.

Anzahl und Umfang der Deklarationsanalysen zur Verwertung / Beseitigung
Grundsätzlich wird für die Entsorgung von 250 m³ / 500 t von im Rahmen von
Aushubmaßnahmen anfallenden und in situ beprobten Materialien mindestens
eine vollständige Deklarationsanalytik gefordert. Bei Haufwerksuntersuchungen
sind erfahrungsgemäß mindestens zwei Deklarationsanalysen je Haufwerk
erforderlich. Der Untersuchungsumfang richtet sich dabei nach dem bauseits
angestrebten Entsorgungsweg und umfasst den vollständigen
Parameterumfang gemäß Baumerkblatt 2018 / EBV / DepV. In Abhängigkeit der
Zulassungsbedingungen bzw. Annahmekriterien der Annahmestellen kann die
Vorlage einer vollständigen Deklarationsanalyse auch für die Entsorgung von
500 m³ / 1.000 t ausreichend sein.

Zeitpunkt der Erstellung der Deklarationsanalytik

Abfallrechtliche Deklarationsanalysen werden erfahrungsgemäß 3 – 6 Monate nach der Durchführung der Analytik von den Annahmestellen nicht mehr akzeptiert.

Annahmespezifisch abweichender Parameterumfang bzw. Grenzwerte

Sollten für die Annahmestelle eigene, behördlich festgelegte Zulassungskriterien bestehen, kann die in diesem Bericht dokumentierte Deklaration sowohl hinsichtlich des Untersuchungsumfangs als auch der Klassifikationsgrenzwerte hiervon abweichen.

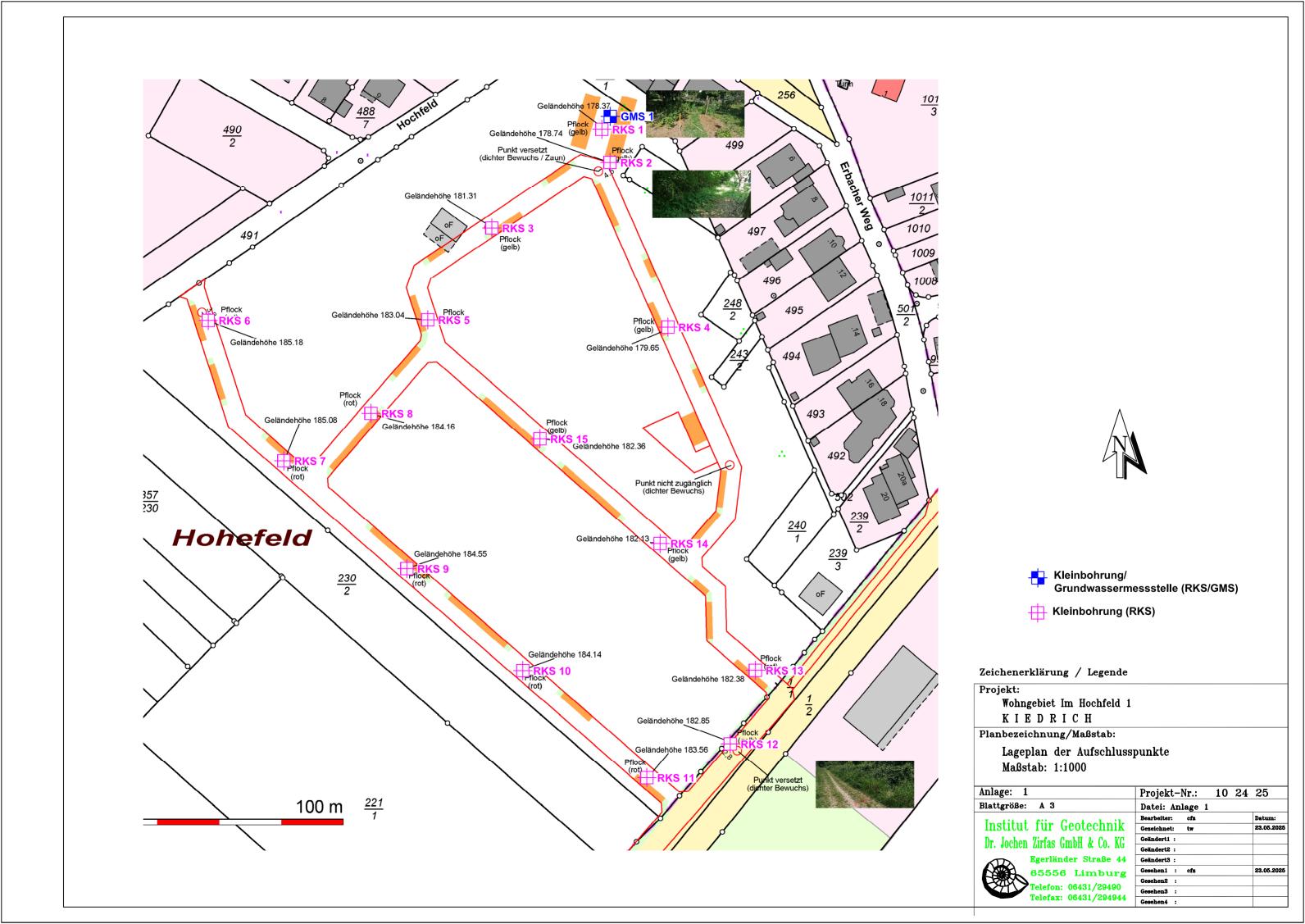
12.0 Schlussbemerkungen

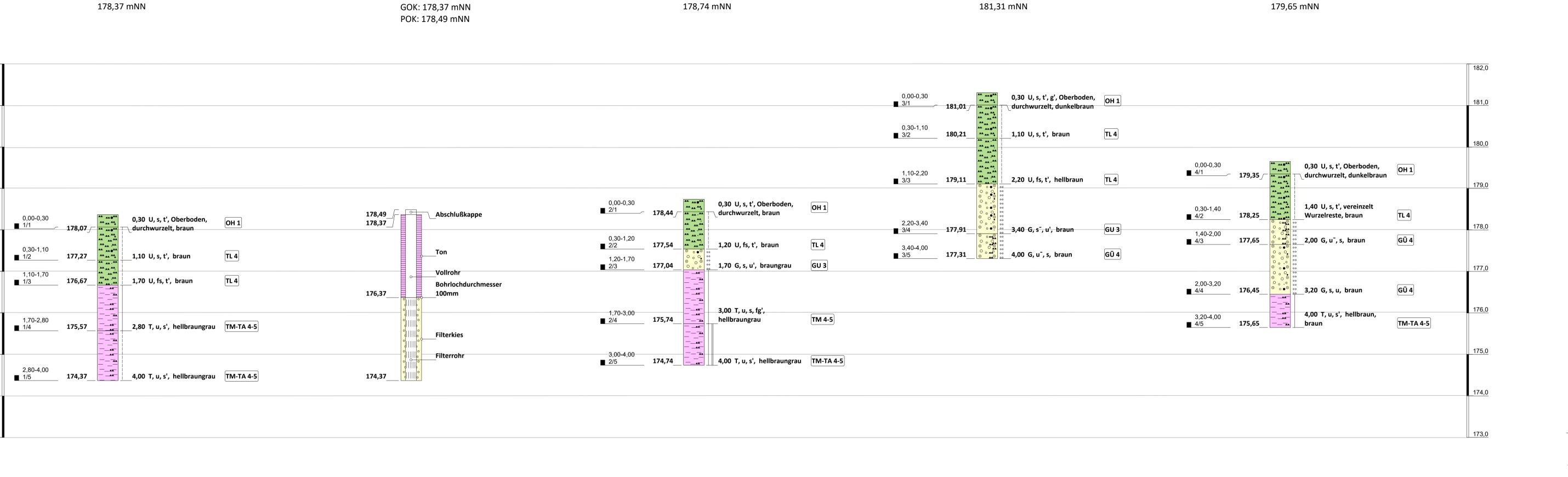
Der vorliegende Geotechnische Bericht enthält die Beschreibung der Baugrund- und Grundwassersituation zu den Kanal- und Straßenbaumaßnahmen zum geplanten Ausbau des Wohngebiets "Im Hochfeld I" in Kiedrich.

Es wurden Empfehlungen für die Erdarbeiten, die Kanalbaumaßnahme, die Verfüllung sowie den Verkehrsflächenaufbau ausgesprochen.

Neben der von der ausführenden Firma durchzuführenden Eigenüberwachung sollte eine Fremdüberwachung durch den Bauherrn veranlasst werden. Das IfG steht für die Durchführung dieser Arbeiten zur Verfügung.

Der vorliegende Bericht ist nur in seiner Gesamtheit verbindlich.

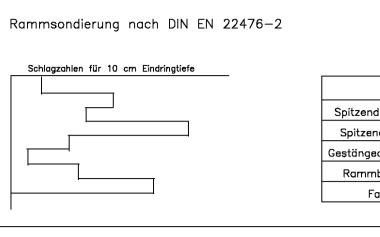

Limburg, den 04.06.2025


Ralph Schäffer (Dipl.-Ing.)

7065Sf

Christian Zirfas
(Bachelor of Engineering)
(M.A. European Business)

Institut für Geotechnik Dr. Jochen Zirfas
GmbH & Co. KG


RKS 3

RKS 4

RKS 2

RKS 1

GMS 1

 M Mächtigkeit der DPH

 DPL
 DPM
 DPH

 Spitzendurchmesser
 3.57 cm
 4.37 cm
 4.37 cm

 Spitzenquerschnitt
 10.00 cm²
 15.00 cm²
 15.00 cm²

 Gestängedurchmesser
 2.20 cm
 3.20 cm
 3.20 cm

10.00 kg 30.00 kg 50.00 kg 50.00 cm 50.00 cm 50.00 cm

ET Endtiefe

				▽ 2,35 01.07.13	Grundwasser (nach Ende der Bohrun
		Hauptbode	narten:	▼ 2,35 01.07.13	Grundwasser (Ruhe)
\$	breiig	**************************************	Schluff (U)		
}	weich	22 22	, ,		
	steif		Kies (G)		
	halbfest		Ton (T)		
	fest				
	locker				
00 00 00 00	mitteldicht				
0	dicht				

KIEDRICH

Planbezeichnung: Profilschnitt der Kleinbohrungen, Pegelausbau RKS 1, GMS 1, RKS 2, RKS 3, RKS 4,

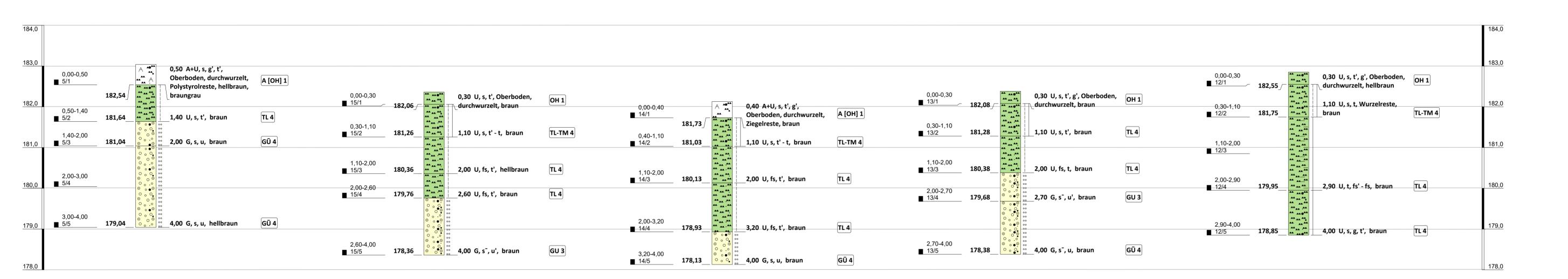
Institut Für Geotechnik

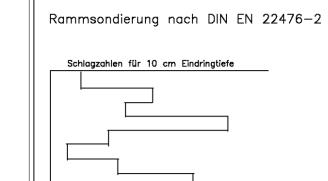
DR. JOCHEN ZIRFAS

Aktenzeichen:	10 24 25	
Anlagen Nr.:	2.1	
Plan Nr.:	1/3	

Maßstab (H/L): 1:50/---

Sachbearbeiter:	CFZ
Zeichner:	TW
Gezeichnet am:	23.05


Geprüft am:


EGERLÄNDER STRASSE 44

65556 LIMBURG

TEL: 06431/2949-0 E-MAIL: IFG@IFG.DE

RKS 12 RKS 5 RKS 15 **RKS 14 RKS 13** 183,04 mNN 182,85 mNN 182,36 mNN 182,13 mNN 182,38 mNN

M Mächtigkeit der DPH DPL DPM DPH Spitzendurchmesser 3.57 cm 4.37 cm 4.37 cm Spitzenquerschnitt | 10.00 cm² | 15.00 cm² | 15.00 cm²

Gestängedurchmesser 2.20 cm 3.20 cm 3.20 cm Rammbärgewicht 10.00 kg 30.00 kg 50.00 kg

50.00 cm | 50.00 cm | 50.00 cm

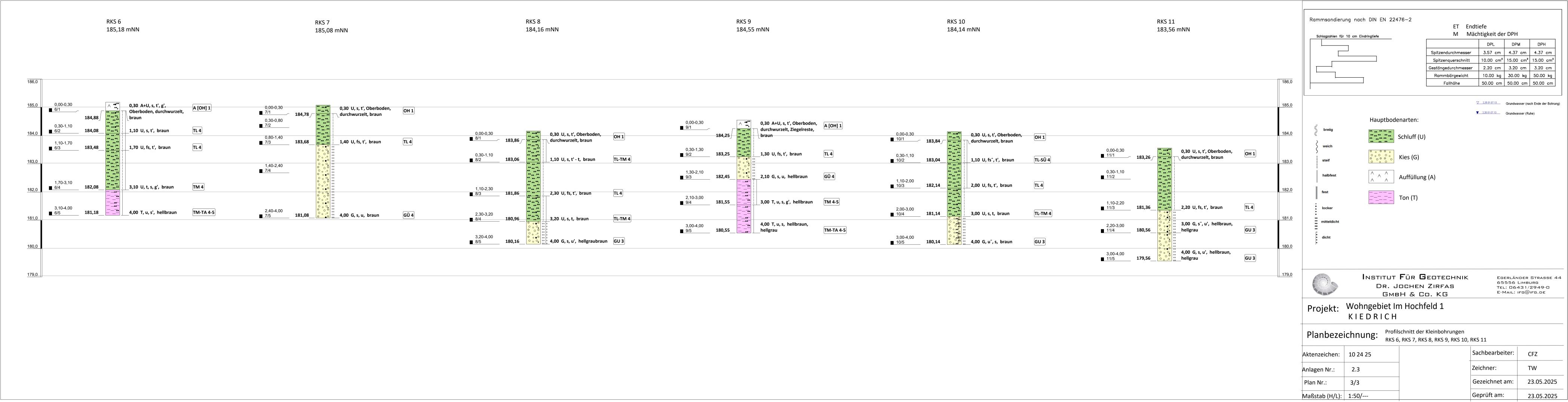
ET Endtiefe

			<u>√ 2,35 01.07.13</u>	Grundwasser (nach Ende der Bohrung)
		Hauptbodenarten:	▼ 2,35 01.07.13	Grundwasser (Ruhe)
\$	breiig	Schluff (U)		
}	weich	© 0 0 0 0		
	steif	Kies (G)		
	halbfest	Auffüllung (A)		
	fest			
9	locker			
99 99 99	mitteldicht			
9	dicht			

Institut Für Geotechnik DR. JOCHEN ZIRFAS

GмвН & Со. КG

EGERLÄNDER STRASSE 44 65556 LIMBURG TEL: 06431/2949-0 E-MAIL: IFG@IFG.DE


23.05.2025

23.05.2025

Projekt: Wohngebiet Im Hochfeld 1 KIEDRICH

Planbezeichnung: Profilschnitt der Kleinbohrungen RKS 5, RKS 15, RKS 14, RKS 13, RKS 12

nzeichen:	10 24 25	Sachbearbeiter:
gen Nr.:	2.2	Zeichner:
Nr.:	2/3	Gezeichnet am:
stab (H/L):	1:50/	Geprüft am:

Prüfungsnummer: 102425_1

Bodenart: Schluff

Art der Entnahme: GP

Probe entnommen am: 19 + 20.05.2025

Bericht: 12 24 25

Anlage: 3.1.1

Wassergehalt nach DIN EN ISO 17892-1 Wohngebiet Im Hochfeld 1, Kiedrich

Bearbeiter: no Datum: 28.05.2025

Probenbezeichnung:	12/3
Entnahmestelle:	RKS 12
Entnahmetiefe [m]:	1,1 - 2,0
Feuchte Probe + Behälter [g]:	304.59
Trockene Probe + Behälter [g]:	278.61
Behälter [g]:	139.45
Porenwasser [g]:	25.98
Trockene Probe [g]:	139.16
Wassergehalt [%]:	18.67

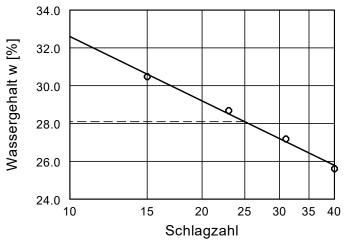
Bericht: 10 24 25 Anlage: 3.1.2

Zustandsgrenzen nach DIN EN ISO 17892 - 12 (Casagrande)

Wohngebiet Im Hochfeld 1,

Kiedrich

Bearbeiter: no Datum: 28.05.2025

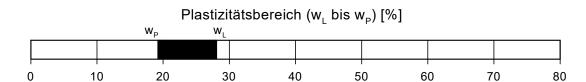

Prüfungsnummer: 102425_1
Probenbezeichnung: 12/3

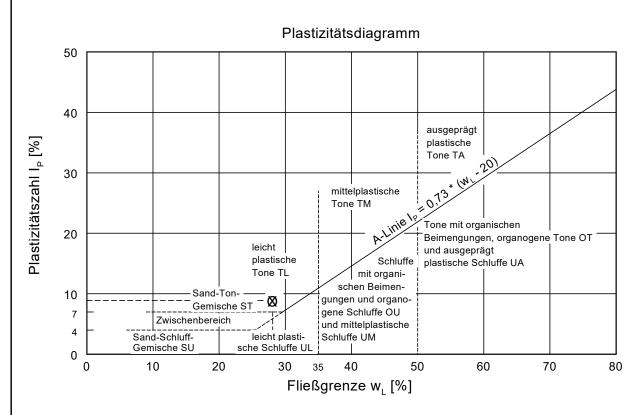
Tiefe [m]: 1,1 - 2,0

Art der Entnahme: GP

Bodenart (Plastizitätsdiagramm nach DIN 18122): Schluff

Probe entnommen am: 19 + 20.05.2025

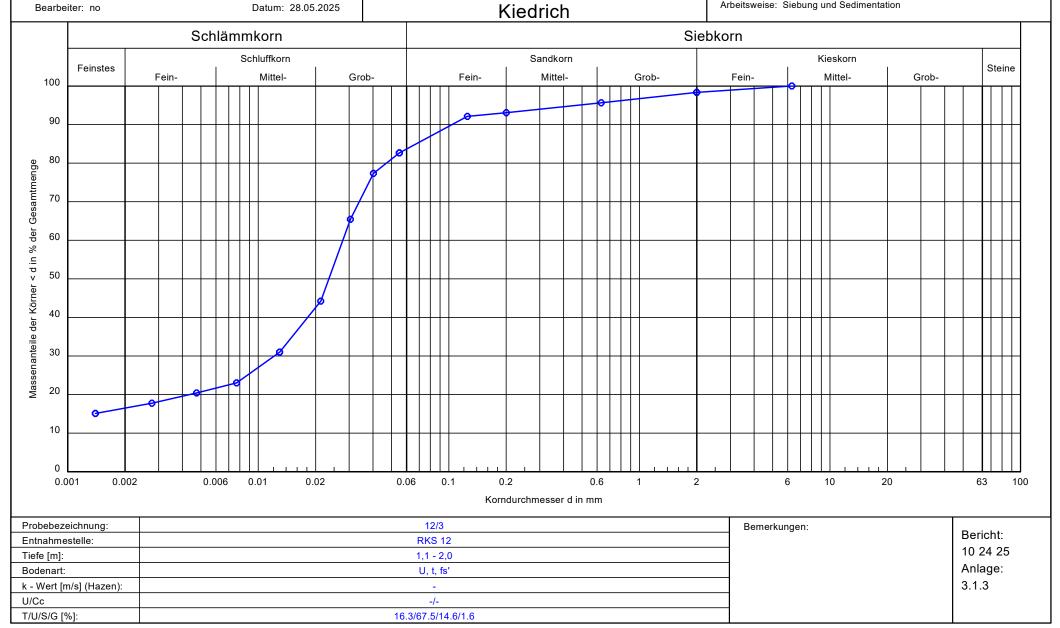



Wassergehalt w = 18.7 %Fließgrenze w_L = 28.1 %Ausrollgrenze w_P = 19.2 %Plastizitätszahl I_P = 8.9 %Konsistenzzahl I_C = 1.06

 I_c = 1.06
 Zustandsform

 halbfest
 steif
 weich
 sehr weich
 breiig

 1.00
 0.75
 0.50
 0.25


Körnungslinie nach DIN EN ISO 17892 - 4 Wohngebiet Im Hochfeld 1,

Prüfungsnummer: 102425_1

Probe entnommen am: 19 + 20.05.2025

Art der Entnahme: GP

Arbeitsweise: Siebung und Sedimentation

Prüfungsnummer: 102425_2

Bodenart: Kies

Art der Entnahme: GP

Probe entnommen am: 19 + 20.05.2025

Bericht: 12 24 25

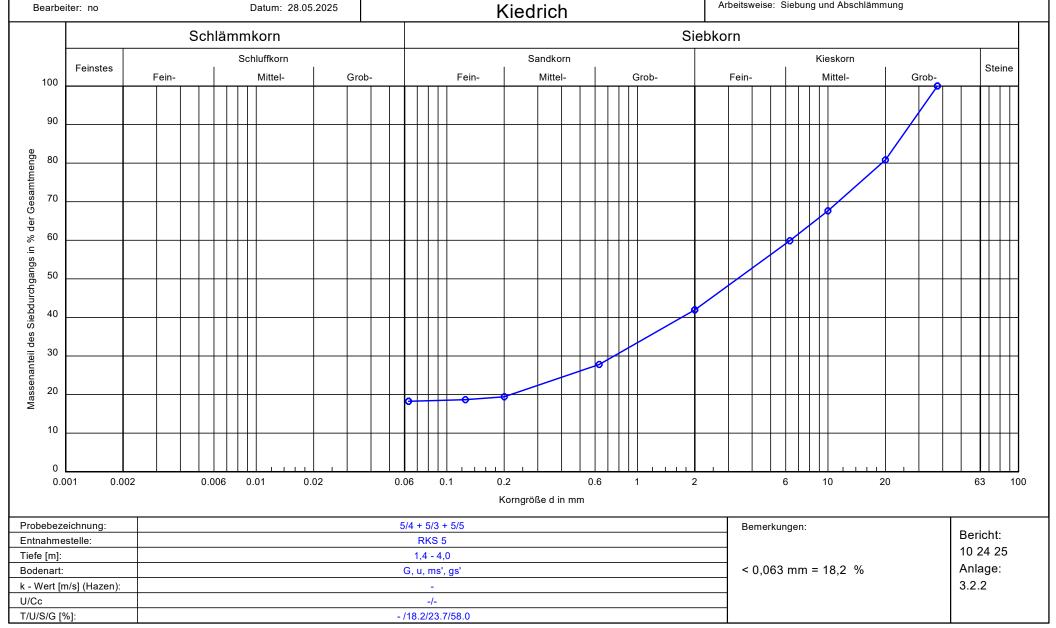
Anlage: 3.2.1

Wassergehalt nach DIN EN ISO 17892-1 Wohngebiet Im Hochfeld 1,

Kiedrich

Bearbeiter: no Datum: 28.05.2025

Probenbezeichnung:	5/3 + 5/4 + 5/5	
Entnahmestelle:	RKS 5	
Entnahmetiefe [m]:	1,4 - 4,0	
Feuchte Probe + Behälter [g]:	3224.70	
Trockene Probe + Behälter [g]:	3098.50	
Behälter [g]:	397.50	
Porenwasser [g]:	126.20	
Trockene Probe [g]:	2701.00	
Wassergehalt [%]:	4.67	


Körnungslinie nach DIN EN ISO 17892 - 4 Wohngebiet Im Hochfeld 1,

Prüfungsnummer: 102425_1

Probe entnommen am: 19 + 20.05.2025

Art der Entnahme: GP

Arbeitsweise: Siebung und Abschlämmung

Anlage: 3.3.1

Bericht: 12 24 25

Wassergehalt nach DIN EN ISO 17892-1

Wohngebiet Im Hochfeld 1, Kiedrich

Bearbeiter: no Datum: 28.05.2025

Prüfungsnummer: 102425_3

Bodenart: Ton

Art der Entnahme: GP

Probe entnommen am: 19 + 20.05.2025

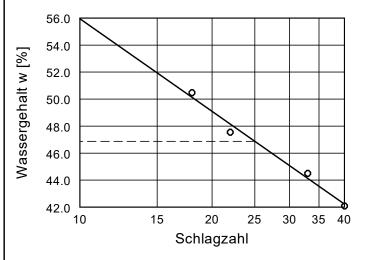
Probenbezeichnung:	4/5
Entnahmestelle:	RKS 4
Entnahmetiefe [m]:	3,2 - 4,0
Feuchte Probe + Behälter [g]:	323.85
Trockene Probe + Behälter [g]:	297.13
Behälter [g]:	162.51
Porenwasser [g]:	26.72
Trockene Probe [g]:	134.62
Wassergehalt [%]:	19.85

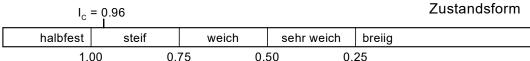
Bericht: 10 24 25 Anlage: 3.3.2

Zustandsgrenzen nach DIN EN ISO 17892 - 12 (Casagrande)

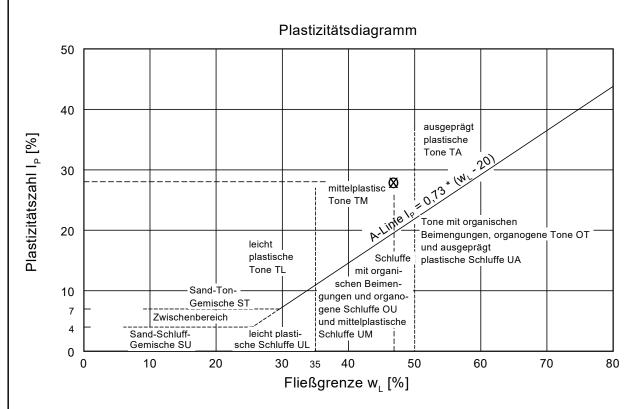
Wohngebiet Im Hochfeld 1,

Kiedrich


Bearbeiter: no Datum: 28.05.2025


Prüfungsnummer: 102425_2 Probenbezeichnung: 4/5 Tiefe [m]: 3,2 - 4,0

Art der Entnahme: GP


Bodenart (Plastizitätsdiagramm nach DIN 18122): Ton

Probe entnommen am: 19 + 20.05.2025

Neubaugebiet Im Hochfeld I Kiedrich Az. 10 24 25

Anlage 4

Bestätigung der Kampfmittelfreiheit der Aufschlusspunkte, KMS

Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Egerländer Straße 44

65556 Limburg

Tel.: 06431/29490

Fax: 06431/294944

Kampfmittelsondierung Maximilian Becker Idarer Straße 13 | D-55743 Idar-Oberstein

Institut für Geotechnik Dr. Jochen Zirfas GmbH & Co. KG z.Hd.: Herrn Ralph Schäffer Egerländer Straße 44 65556 Limburg-Staffel

Bestätigung der Kampfmittelfreiheit – Bohrloch (vertikal) (gem. ATV DIN 18299 Abschnitt 0.1.18 VOB/C)

Bauvorhaben/Betreff: Baugrunderkundung / Bohrlochfeld 02

Ort: Kiedrich, Im Hochfeld

Auftraggeber: Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Egerländer Straße 44 65556 Limburg-Staffel

Ansprechpartner: Herr Ralph Schäffer

Untersuchungsdatum: 19.05.2025

Sondierverfahren: Geomagnetik

Sondiermethodik: Bohrlochsondierung

Sondiertechnik: Vallon VX1

Beschreibung der Arbeiten:

Die beauftragten und bauseits eingemessenen Bohransatzpunkte wurden durch ein Kleinbohrgerät (1,8To Lafettenbohrgerät auf Raupenfahrgestell) erschütterungsfrei, mittels Vollbohrschnecke, bis zum kampfmittelrelevanten Gefahrenband des Bundeslandes Hessen (5,0m unter GOK WK II) abgeteuft und danach mit 2" HDPE-Rohren verrohrt. In diese HDPE-Rohre wurde o. g. Sondiertechnik abgelassen und das Bohrloch, von unten nach oben, EDV-gestützt mittels Geomagnetik gemessen als auch aufgezeichnet.

Im Anschluss an die Sondierung wurden die Messergebnisse mit "VALLON EVA2000 2.48" ausgewertet und auf kampfmittelrelevante Anomalien/Störpunkte interpretiert.

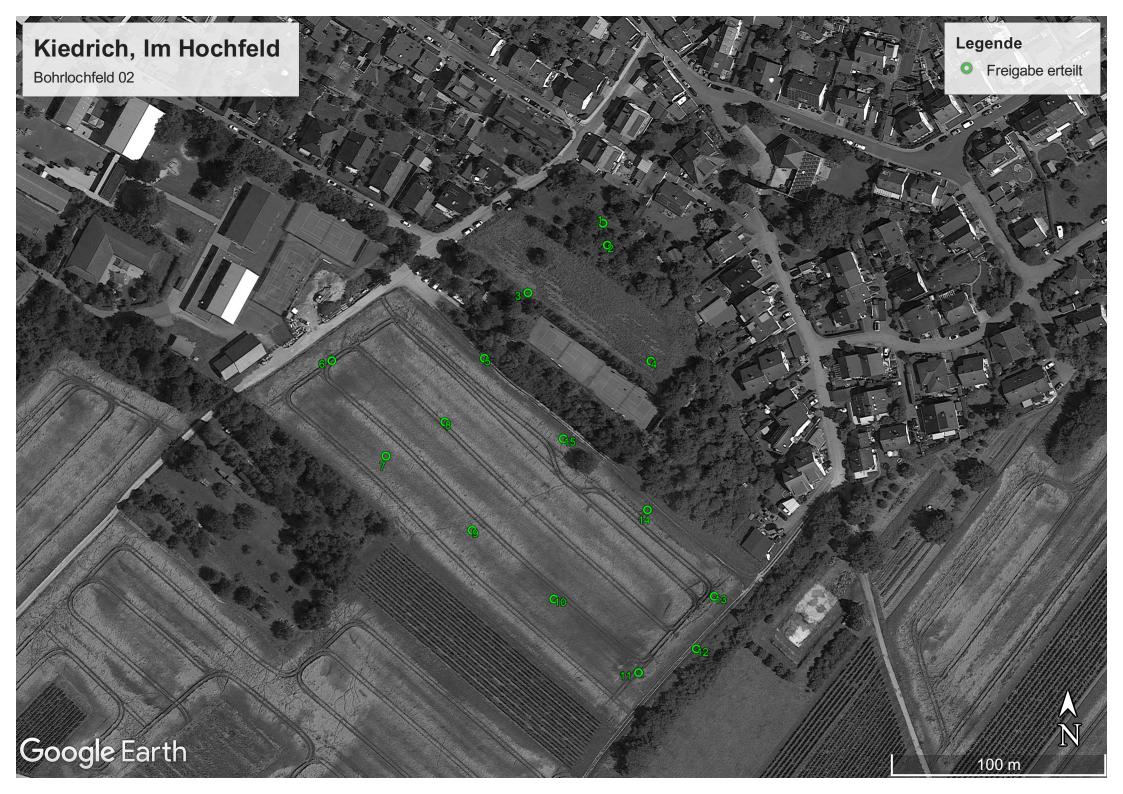
<u>Die Sondierung wurde nach anerkannten Methoden der Geophysik und nach dem heutigen Stand der Technik durchgeführt.</u>

Bohransatzpunkte:

BL (Tiefe):

BL 1 (5,0m)	BL 2 (5,0m)	BL 3 (5,0m)	BL 4 (5,0m)	BL 5 (5,0m)	BL 6 (5,0m)	BL 7 (5,0m)	BL 8 (5,0m)
BL 9 (5,0m)	BL 10 (5,0m)	BL 11 (5,0m)	BL 12 (5,0m)	BL 13 (5,0m)	BL 14 (5,0m)	BL 15 (5,0m)	

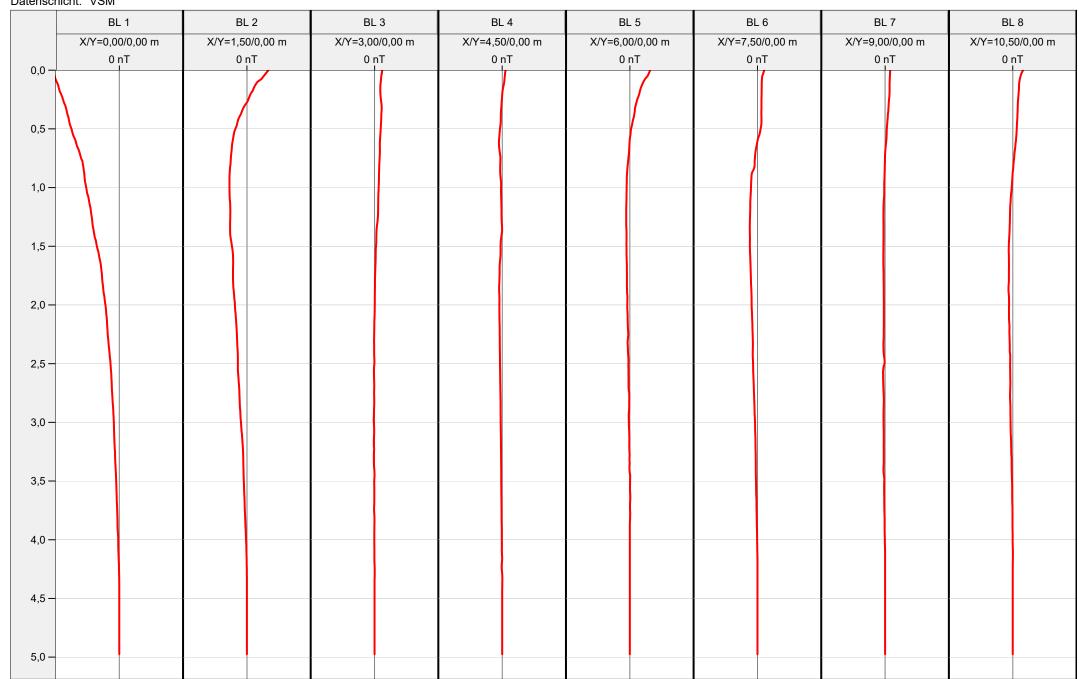
Ergebnis:


Es wurden keine ferromagnetischen Messungen, die auf Kampfmittel hindeuten, an o. g. Bohransatzpunkten gemessen. Die Kampfmittelfreiheit ist in dem unmittelbaren Umfeld um den jeweiligen Bohrpunkt (Radius ca. 1,0m) erteilt!

Hinweise auf Kampfmittel liegen nicht vor. Gegen die Ausführung der Bauarbeiten bestehen keine Bedenken.

Hinweis:

Es wird darauf hingewiesen, dass trotz fachgerechter Untersuchung und Beräumung nach dem Stand der Technik und den gesetzlichen Vorgaben nicht auszuschließen ist, dass sich auf den untersuchten o. g. Flächen weiterhin Kampfmittel befinden. Bei jeglichem Verdacht des Antreffens von Kampfmitteln ist deshalb die zuständige Polizeibehörde zu benachrichtigen und die Bauarbeiten sind in diesem Bereich sofort einzustellen.


Kiedrich, Im Hochfeld - Bohrlochfeld 02

Dienstleister: Kampfmittelsondierung Maximilian Becker

Maximilian Becker Bearbeiter:

Datenschicht: VSM

Kiedrich, Im Hochfeld - Bohrlochfeld 02

Dienstleister: Kampfmittelsondierung Maximilian Becker

Bearbeiter: Maximilian Becker

Datenschicht: VSM

Datenschi	icht: VSM							
	BL 9	BL 10	BL 11	BL 12	BL 13	BL 14	BL 15	
	X/Y=12,00/0,00 m	X/Y=13,50/0,00 m	X/Y=15,00/0,00 m	X/Y=16,50/0,00 m	X/Y=18,00/0,00 m	X/Y=19,50/0,00 m	X/Y=21,00/0,00 m	
0,0	0 nT							
0,0								
0,5 —								
1,0 —								
1,5 —								
2,0 —								
2,5								
3,0 —								
3,5 —								
4,0 —								
4,5 —								
5,0 —								

Wohngebiet
"Im Hochfeld I"
Kiedrich
Az. 10 24 25

Anlage 5

Probenahmeprotokolle nach LAGA M 32 PN 98

Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Egerländer Straße 44

65556 Limburg

Tel.: 06431/29490

Fax: 06431/294944

Protokoll über die Entnahme von Feststoffproben Probenahmeprotokoll nach LAGA M32 (PN 98) und Anhang 4 der DepV Institut für Geotechnik Dr. Jochen Zirfas GmbH & Co. KG Aktenzeichen: Probenahme durch: Egerländer Str. 44, 65556 Limburg 10 24 25 Tel: 06431 / 2949-0, E-Mail: info@ifg.de Projektbezeichnung: Wohngebiet "Im Hochfeld I", Kiedrich Gemeinde Kiedrich Veranlasser / Auftraggeber: Marktstraße 27 65399 Kiedrich Probenbezeichnung: NB 1 Probenehmer / Datum: Herr Mertesacker / 19. und 20.05.2025 Anwesende Personen: Herr Wörsdörfer (IfG) Herkunft des Abfalls: Projektstandort Zweck der Probenahme: Abfallrechtliche Deklarationsanalytik Vermutete Schadstoffe: unspezifisch Untersuchungsstelle / Labornr. Dr. Graner & Partner GmbH, München / 2527446X-001a und b Abfallart: Boden Gesamtvolumen / Form der unbekannt / eingebaut / unbekannt Lagerung / Lagerungsdauer: Einflüsse auf das Material: unbekannt Probenahmeverfahren: In-situ-Beprobung Entnahmegeräte: Rammkernsonde, Schaufel, Mischwanne Einzelproben: 96 Mischproben: 24 Anzahl Einzelproben, Mischproben, Laborproben: Einzelproben je Mischprobe: 4 Laborproben: 1 Probenvorbereitungsschritte: Fraktionierendes Schaufeln Probenmenge: 10.000 g Probenbehälter: PE-Behälter Probenkonservierung: dunkel, gekühlt Farbe / Aussehen: braun, grau Geruch: unauffällig Allgemeine Beschreibung: Schluff, (fein)sandig, tonig / Kies, sandig, schluffig / Ton, sandig, schluffig, feinkiesig Fremdbestandteile / opt. Auffälligkeit: Bemerkungen: Lageplan / Lageskizze Anlage im Bericht Anhang an das Probenahmeprotokoll □ nicht vorhanden □ Unterschrift(en): Probenehmer: i.V. Anwesende Zeugen: 2.P.R Limburg, den 20.05.2025

Protokoll über die Entnahme von Feststoffproben Probenahmeprotokoll nach LAGA M32 (PN 98) und Anhang 4 der DepV Institut für Geotechnik Dr. Jochen Zirfas GmbH & Co. KG Aktenzeichen: Probenahme durch: Egerländer Str. 44, 65556 Limburg 10 24 25 Tel: 06431 / 2949-0, E-Mail: info@ifg.de Projektbezeichnung: Wohngebiet "Im Hochfeld I", Kiedrich Gemeinde Kiedrich Veranlasser / Auftraggeber: Marktstraße 27 65399 Kiedrich Probenbezeichnung: NB 2 Probenehmer / Datum: Herr Mertesacker / 19. und 20.05.2025 Anwesende Personen: Herr Wörsdörfer (IfG) Herkunft des Abfalls: Projektstandort Zweck der Probenahme: Abfallrechtliche Deklarationsanalytik Vermutete Schadstoffe: unspezifisch Untersuchungsstelle / Labornr. Dr. Graner & Partner GmbH, München / 2527447X-001a und b Abfallart: Boden Gesamtvolumen / Form der unbekannt / eingebaut / unbekannt Lagerung / Lagerungsdauer: Einflüsse auf das Material: unbekannt Probenahmeverfahren: In-situ-Beprobung Entnahmegeräte: Rammkernsonde, Schaufel, Mischwanne Einzelproben: 84 Mischproben: 21 Anzahl Einzelproben, Mischproben, Laborproben: Einzelproben je Mischprobe: 4 Laborproben: 1 Probenvorbereitungsschritte: Fraktionierendes Schaufeln Probenmenge: 10.000 g Probenbehälter: PE-Behälter Probenkonservierung: dunkel, gekühlt Farbe / Aussehen: braun, grau Geruch: unauffällig Allgemeine Beschreibung: Schluff, (fein)sandig, tonig, kiesig / Kies, sandig, schluffig / Ton, sandig, schluffig, kiesig Fremdbestandteile / opt. Auffälligkeit: Bemerkungen: Lageplan / Lageskizze Anlage im Bericht Anhang an das Probenahmeprotokoll □ nicht vorhanden □ Unterschrift(en): Probenehmer: i.V. Anwesende Zeugen: 2.P.R Limburg, den 20.05.2025

Wohngebiet "Im Hochfeld I" Kiedrich Az. 10 24 25

Anlage 6

Tabellarische Gegenüberstellung der Analysenergebnisse zu den Zuordnungswerten gemäß Ersatzbaustoffverordnung

Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Egerländer Straße 44

65556 Limburg

Tel.: 06431/29490

Fax: 06431/294944

Tabelle 1: Analysenergebnisse des Bodenmaterials¹ im Feststoff (mg/kg) im Vergleich zu den Zuordnungswerten gemäß Ersatzbaustoffverordnung, Anlage 1, Tabelle 3

Spalte 1	Spalte 2	Probe	Probe	Spalte 3	Spalte 4	Spalte 5	Spalte 6	Spalte 7	Spalte 8	Spalte 9	Spalte 10	EBV Spalten
Parameter		NB 1	NB 2	BM-0 BG-0 (Sand) ²	BM-0 BG-0 (Lehm / Schluff) ²	BM-0 BG-0 (Ton) ²	BM-0* BG-0* ³	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	> BM-F3
	Dim.	Lehm/Schluff										
Mineralische Fremd- bestandteile	Vol%	0	0	≤ 10	<u><</u> 10	<u><</u> 10	<u><</u> 10	<u><</u> 50	<u><</u> 50	<u><</u> 50	<u><</u> 50	
Arsen	mg/kg	1,1	2,4	10	20	20	20	40	40	40	150	
Blei	mg/kg	9,5	7,3	40	70	100	140	140	140	140	700	
Cadmium	mg/kg	0,18	0,15	0,4	1	1,5	1 ⁶	2	2	2	10	
Chrom (gesamt)	mg/kg	26	23	30	60	100	120	120	120	120	600	
Kupfer	mg/kg	12	9,0	20	40	60	80	80	80	80	320	
Nickel	mg/kg	19	17	15	50	70	100	100	100	100	350	
Quecksilber	mg/kg	u.d.B.	u.d.B.	0,2	0,3	0,3	0,6	0,6	0,6	0,6	5	
Thallium	mg/kg	u.d.B.	u.d.B.	0,5	1,0	1,0	1,0	2	2	2	7	
Zink	mg/kg	44	36	60	150	200	300	300	300	300	1200	
TOC	Masse- %	0,36	0,30	1 7	1 ⁷	1 7	1 7	5	5	5	5	
Kohlenwasserstoffe ⁸	mg/kg	u.d.B. (u.d.B.)	u.d.B. (u.d.B.)				300 (600)	300 (600)	300 (600)	300 (600)	1000 (2000)	
Benzo(a)pyren	mg/kg	u.d.B.	u.d.B.	0,3	0,3	0,3	, ,			, ,		
PAK ₁₆ 10	mg/kg	0,01	n.n.	3	3	3	6	6	6	9	30	
PCB ₆ und PCB-118	mg/kg	n.n.	n.n.	0,05	0,05	0,05	0,1					
EOX ¹¹	mg/kg	u.d.B.	u.d.B.	1	1	1	1					

u.d.B. unter der Bestimmungsgrenze

n. b. nicht berechnet, da alle Einzelsubstanzen unterhalb der Bestimmungsgrenze liegen

n.n. nicht nachweisbar

Tabelle 2: Analysenergebnisse des Bodenmaterials¹ im Eluat im Vergleich mit den Zuordnungswerten gemäß Ersatzbaustoffverordnung, Anlage 1, Tabelle 3

Spalte 1	Spalte 2	Probe	Probe	Spalte 3	Spalte 4	Spalte 5	Spalte 6	Spalte 7	Spalte 8	Spalte 9	Spalte 10	EBV Spalten
		NB 1	NB 2	BM-0	BM-0 BG-0	BM-0	BM-0*	BM-F0*	BM-F1	BM-F2	BM-F3	
Parameter	Dim.	Lehm/	'Schluff	BG-0 (Sand) ²	(Lehm / Schluff) ²	BG-0 (Ton) ²	BG-0* ³	BG-F0*	BG-F1	BG-F2	BG-F3	> BM-F3
Mineralische Fremd- bestandteile	Vol%	0	0	<u>≤</u> 10	<u><</u> 10	<u><</u> 10	<u><</u> 10	<u><</u> 50	<u><</u> 50	<u><</u> 50	<u><</u> 50	
pH-Wert ⁴	μg/l	8,0	8,1					6,5 – 9,5	6,5 – 9,5	6,5 – 9,5	5,5 – 12,0	
Elektr. Leitfähigkeit ⁴	μS/cm	200	190				350	350	500	500	2000	
Sulfat (mg/l)	mg/l	2,4	4,1	250 ⁵	250 ⁵	250 ⁵	250 ⁵	250 ⁵	450	450	1000	
Arsen	μg/l	u.d.B.	u.d.B.				8 (13)	12	20	85	100	
Blei	μg/l	u.d.B.	u.d.B.				23 (43)	35	90	250	470	
Cadmium	μg/l	u.d.B.	u.d.B.				2 (4)	3,0	3,0	10	15	
Chrom (gesamt)	μg/l	u.d.B.	u.d.B.				10 (19)	15	150	290	530	
Kupfer	μg/l	u.d.B.	u.d.B.				20 (41)	30	110	170	320	
Nickel	μg/l	u.d.B.	u.d.B.				20 (31)	30	30	150	280	
Quecksilber 12	μg/l	u.d.B.	u.d.B.				0,1					
Thallium ¹²	μg/l	u.d.B.	u.d.B.				0,2 (0,3)					
Zink	μg/l	u.d.B.	u.d.B.				100 (210)	150	160	840	1600	
PAK ₁₅ ⁹	μg/l	n.n.	0,0664				0,2	0,3	1,5	3,8	20	
Naphthalin und Methylnaphthaline, ges.	μg/l	n.n.	0,04665				2					
PCB ₆ und PCB-118	μg/l	n.n.	n.n.				0,01					

u.d.B. unter der Bestimmungsgrenze

n. b. nicht berechnet, da alle Einzelsubstanzen unterhalb der Bestimmungsgrenze liegen

n.n. nicht nachweisbar

Fußnoten nach Tabelle 3:

- = Die Materialwerte gelten für Bodenmaterial und Baggergut mit bis zu 10 Volumenprozent (BM oder BG) oder bis zu 50 Volumenprozent (BM-F und BG-F) mineralischer Fremdbestandteile im Sinne von § 2 Nummer 8 der BBodSchV mit nur vernachlässigbaren Anteilen an Störstoffen im Sinne von § 2 Nummer 9 der BBodSchV. Bodenmaterial der Klasse BM-0 und Baggergut der Klasse BM-0 und Baggergut der Klasse BG-0 sand erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 7 Absatz 3 der BBodSchV. Bodenmaterial der Klasse BM-0* und Baggergut der Klasse BG-0* erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 8 Absatz 2 der BBodSchV; Bodenmaterial der Klasse BM-0* und Baggergut der Klasse BG-0* erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 8 Absatz 3 Nummer 1 der BBodSchV.
- 2 = Bodenarten-Hauptgruppen gemäß Bodenkundlicher Kartieranleitung, 5. Auflage, Hannover 2005 (KA 5); stark schluffige Sande, lehmig-schluffige Sande und stark lehmige Sande sowie Materialien, die nicht bodenartspezifisch zugeordnet werden können, sind entsprechend der Bodenart Lehm, Schluff zu bewerten.
- 3 = Die Eluatwerte in Spalte 6 sind mit Ausnahme des Eluatwertes für Sulfat nur maßgeblich, wenn für den betreffenden Stoff der jeweilige Feststoffwert nach Spalte 3 bis 5 überschritten wird. Der Eluatwert für PAK₁5 und Naphthalin und Methylnaphthaline, gesamt, ist maßgeblich, wenn der Feststoffwert für PAK₁6 nach Spalte 3 bis 5 überschritten wird. Die in Klammern genannten Werte gelten jeweils bei einem TOC-Gehalt von ≥ 0,5 %.
- 4 = Stoffspezifischer Orientierungswert; bei Abweichungen ist die Ursache zu prüfen.
- 5 = Bei Überschreitung des Wertes ist die Ursache zu prüfen. Handelt es sich um naturbedingt erhöhte Sulfatkonzentrationen, ist eine Verwertung innerhalb der betroffenen Gebiete möglich. Außerhalb dieser Gebiete ist über die Verwertungseignung im Einzelfall und in Abstimmung mit der Behörde zu entscheiden.
- 6 = Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm, Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg.
- 7 = Bodenmaterialspezifischer Orientierungswert. Bei heterogenen Bodenverhältnissen mineralischer Böden kann der TOC-Gehalt der Masse des anfallenden Materials als maßgeblich bei Verwertung im Umfeld des anfallenden Materials und Verwendung unter gleichen Bedingungen herangezogen werden. Beim Einbau sind Volumenbeständigkeit und Setzungsprozesse sowie die Vorgaben von § 6 Absatz 11 Satz 2 und 3 der BBodSchV zu berücksichtigen.
- 8 = Die angegebenen Werte gelten für Kohlenwasserstoffverbindungen mit einer Kettenlänge von C10 bis C22. Der Gesamtgehalt bestimmt nach der DIN EN 14039, "Charakterisierung von Abfällen Bestimmung des Gehalts an Kohlenwasserstoffen von C10 bis C40 mittels Gaschromatographie", Ausgabe Januar 2005 darf insgesamt den in Klammern genannten Wert nicht überschreiten.
- 9 = PAK₁₅: PAK₁₆ ohne Naphthalin und Methylnaphthaline.
- 10 = PAK₁₆: stellvertretend für die Gruppe der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) werden nach der Liste der US-amerikanischen Umweltbehörde, Environmental Protection Agency (EPA), 16 ausgewählte PAK untersucht: Acenaphthen, Acenaphthylen, Anthracen, Benzo[a]anthracen, Benzo[a]pyren, Benzo[b]fluoranthen, Benzo[g,h,i]perylen, Benzo-[k]fluoranthen, Chrysen, Dibenzo[a,h]anthracen, Fluoranthen, Fluoren, Indeno[1,2,3-cd]pyren, Naphthalin, Phenanthren und Pyren.
- 11 = Bei Überschreitung der Werte sind die Materialien auf fallspezifische Belastungen zu untersuchen.
- 12 = Bei Quecksilber und Thallium ist für die Klassifizierung in die Materialklassen BM-F0*/BG-F0*, BM-F1/BG-F1, BM-F2/BG-F2, BM-F3/BG-F3 der angegebene Gesamtgehalt maßgeblich. Der Eluatwert der Materialklasse BM-0*/BG-0* ist einzuhalten.

Wohngebiet "Im Hochfeld I" Kiedrich Az. 10 24 25

Anlage 7

Prüfberichte Dr. Graner & Partner GmbH

Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Egerländer Straße 44

65556 Limburg

Tel.: 06431/29490

Fax: 06431/294944

Ihre Ansprechpartner

Dr. Bernd Kugler +49 (0) 6103 485698-22 b.kugler@labor-graner.de

Isabelle Hopf +49 (0) 6103 485698-46 i.hopf@labor-graner.de

Swantje Janssen +49 (0) 6103 485698-47 s.janssen@labor-graner.de

Dr. Graner & Partner GmbH, Lochhausener Str. 205, 81249 München

Institut für Geotechnik Dr. Jochen Zirfas GmbH & Co. KG Egerländer Straße 44

65556 Limburg-Staffel

Dreieich, 30.05.2025

Prüfbericht 2527446X

Auftraggeber: Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Projektleiter: Herr Prox

Auftragsnummer:

Auftraggeberprojekt: 10 24 25 Wohngebiet Im Hochfeld 1, Kiedrich

Probenahmedatum: 19.05.2025

Probenahmeort: Kiedrich

Probenahme durch: Auftraggeber

Probengefäße: Kunststoffbeutel

Eingang am: 23.05.2025

Zeitraum der Prüfung: 23.05.2025 - 30.05.2025

Akkreditiertes Prüflabor nach DIN EN ISO 17025: 2018-03 · D-PL-18601-01-00

Arzneimittel, Lebensmittel, Kosmetika, Bedarfsgegenstände, Wasser, Boden, Luft, Medizinprodukte, Analytik, Entwicklung, Qualitätskontrolle, Beratung, Sachverständigengutachten, amtliche Gegenproben, Mikrobiologie, Arzneimittelzulassung, Abgrenzungsfragen AMG/LFGB

Amtsgericht München Nr. 84402, Geschäftsführer: Alexander Hartmann Bankverbindung: Genossenschaftsbank Aubing eG (BLZ 701 694 64) Kto.-Nr. 69922 IBAN: DE30 7016 9464 0000 0699 22, BIC: GENODEFIM07 Ust-ID DE 129 4000 66

E-Mail: info@labor-graner.de Website: www.labor-graner.de

Seite: 1 von 6

Datum: 30.05.2025

Probenbezeichnung: NB 1

Probenahmedatum: 19.05.2025

Labornummer: 2527446X-001a

Material: Feststoff, Gesamtfraktion

	Gehalt	Einheit	BG	Verfahren
Anteil < 2 mm	74,4	%		
Trockenrückstand	84	%		DIN EN 14346: 2007-03
Arsen	1,1	mg/kg TS	1	DIN EN 16170: 2017-01
Blei	9,5	mg/kg TS	0,2	DIN EN 16170: 2017-01
Cadmium	0,18	mg/kg TS	0,1	DIN EN 16170: 2017-01
Chrom	26	mg/kg TS	0,2	DIN EN 16170: 2017-01
Kupfer	12	mg/kg TS	0,2	DIN EN 16170: 2017-01
Nickel	19	mg/kg TS	0,5	DIN EN 16170: 2017-01
Quecksilber	u.d.B.	mg/kg TS	0,06	DIN EN ISO 12846: 2012-08
Thallium	u.d.B.	mg/kg TS	0,2	DIN EN 16170: 2017-01
Zink	44	mg/kg TS	0,2	DIN EN 16170: 2017-01
тос	0,36	% TS	0,1	DIN EN 15936: 2012-11
EOX	u.d.B.	mg/kg TS	0,33	DIN 38414-17: 2017-01
Kohlenwasserstoffe	u.d.B.	mg/kg TS	50	DIN EN 14039: 2005-01
Kohlenwasserstoffe C10 - C22	u.d.B.	mg/kg TS	50	DIN EN 14039: 2005-01
Naphthalin	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Acenaphthylen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Acenaphthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Fluoren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Phenanthren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Benz(a)anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Chrysen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Benzo(b)fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Benzo(k)fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Benzo(a)pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Indeno(123-cd)pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Dibenz(ah)anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Benzo(ghi)perylen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05
Summe PAK nach EBV	0,01	mg/kg TS		berechnet

Datum: 30.05.2025

Probenbezeichnung: NB 1

Probenahmedatum: 19.05.2025

Labornummer: 2527446X-001a

Material: Feststoff, Gesamtfraktion

	, -			
	Gehalt	Einheit	BG	Verfahren
PCB Nr. 28	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 52	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 101	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 153	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 138	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 180	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 118	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
Summe PCB nach EBV	n.n.	mg/kg TS		berechnet

Seite: 3 von 6

Datum: 30.05.2025

Probenbezeichnung: NB 1

Probenahmedatum: 19.05.2025

Labornummer: 2527446X-001b

Material: Feststoff, Gesamtfraktion

Gehalt Einheit BG Verfahren

	Gehalt	Einheit	BG	Verfahren			
Bestimmungen im Eluat - (DIN 19529: 2015-12)							
pH-Wert	8,0			DIN EN ISO 10523: 2012-04			
Leitfähigkeit	200	μS/cm		DIN EN 27888: 1993-11			
Sulfat	2,4	mg/l	2	DIN EN ISO 10304-1: 2009-07			
Arsen	u.d.B.	μg/l	2,5	DIN EN ISO 17294-2: 2017-01			
Blei	u.d.B.	μg/l	2,5	DIN EN ISO 17294-2: 2017-01			
Cadmium	u.d.B.	μg/l	0,5	DIN EN ISO 17294-2: 2017-01			
Chrom	u.d.B.	μg/l	3	DIN EN ISO 17294-2: 2017-01			
Kupfer	u.d.B.	μg/l	6	DIN EN ISO 17294-2: 2017-01			
Nickel	u.d.B.	μg/l	6	DIN EN ISO 17294-2: 2017-01			
Quecksilber	u.d.B.	μg/l	0,03	DIN EN ISO 12846: 2012-08			
Thallium	u.d.B.	μg/l	0,06	DIN EN ISO 17294-2: 2017-01			
Zink	u.d.B.	μg/l	10	DIN EN ISO 17294-2: 2017-01			
Acenaphthylen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Acenaphthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Fluoren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Phenanthren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Fluoranthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benz(a)anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Chrysen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(b)fluoranthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(k)fluoranthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(a)pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Indeno(123-cd)pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Dibenz(ah)anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(ghi)perylen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Summe PAK (15) nach EBV	n.n.	μg/l		berechnet			
Naphthalin	u.d.B	μg/l	0,0085	DIN 38407-39: 2011-09			
2-Methylnaphthalin	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
1-Methylnaphthalin	u.d.B	μg/l	0,0085	DIN 38407-39: 2011-09			
Summe Naphthaline nach EBV	n.n	μg/l		berechnet			

Datum: 30.05.2025

Probenbezeichnung: NB 1

Probenahmedatum: 19.05.2025

Labornummer: 2527446X-001b

Material: Feststoff, Gesamtfraktion

Gehalt Einheit BG Verfahren

Bestimmungen im Eluat - (DIN 19529: 2015-12)
--

Bestimmungen im Eluat - (DIN 19529:	2015-12)				
PCB Nr. 28	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 52	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 101	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 153	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 138	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 180	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
PCB Nr. 118	u.d.B.	μg/l	0,0009	DIN 38407-37: 2013-11	
Summe PCB nach EBV	n.n.	μg/l		berechnet	

Seite: 5 von 6

Ergänzung zu Prüfbericht 2527446X

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Parameterspezifische Messunsicherheiten sowie Informationen zu deren Berechnung sind auf Anfrage verfügbar. Die aktuelle Liste der flexibel akkreditierten Prüfverfahren kann auf unserer Website eingesehen werden (https://labor-graner.de/unternehmen.html).

Unsachgemäße Probengefäße können zu Verfälschungen der Messwerte führen. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nur mit unserer schriftlichen Genehmigung erlaubt.

BG: Bestimmungsgrenze
KbE: Koloniebildende Einheiten

n.a.: nicht analysierbar n.b.: nicht berechenbar n.n.: nicht nachweisbar

u.d.B.: unter der Bestimmungsgrenze

HS: Headspace

fl./fl.-Extr. flüssig-flüssig-Extraktion

* Fremdvergabe

Isabelle Hopf, Kundenbetreuung

Seite: 6 von 6

Ihre Ansprechpartner

Dr. Bernd Kugler +49 (0) 6103 485698-22 b.kugler@labor-graner.de

Isabelle Hopf +49 (0) 6103 485698-46 i.hopf@labor-graner.de

Swantje Janssen +49 (0) 6103 485698-47 s.janssen@labor-graner.de

Dr. Graner & Partner GmbH, Lochhausener Str. 205, 81249 München

Institut für Geotechnik
Dr. Jochen Zirfas GmbH & Co. KG
Egerländer Straße 44

65556 Limburg-Staffel

Dreieich, 03.06.2025

Prüfbericht 2527447X

Auftraggeber: Institut für Geotechnik

Dr. Jochen Zirfas GmbH & Co. KG

Projektleiter: Herr Prox

Auftragsnummer:

Auftraggeberprojekt: 10 24 25 Wohngebiet Im Hochfeld 1, Kiedrich

Probenahmedatum: 19.05.2025

Probenahmeort: Kiedrich

Probenahme durch: Auftraggeber

Probengefäße: Kunststoffbeutel

Eingang am: 23.05.2025

Zeitraum der Prüfung: 23.05.2025

Akkreditiertes Prüflabor nach DIN EN ISO 17025: 2018-03 · D-PL-18601-01-00

Arzneimittel, Lebensmittel, Kosmetika, Bedarfsgegenstände, Wasser, Boden, Luft, Medizinprodukte, Analytik, Entwicklung, Qualitätskontrolle, Beratung, Sachverständigengutachten, amtliche Gegenproben, Mikrobiologie, Arzneimittelzulassung, Abgrenzungsfragen AMG/LFGB

Amtsgericht München Nr. 84402, Geschäftsführer: Alexander Hartmann Bankverbindung: Genossenschaftsbank Aubing eG (BLZ 701 694 64) Kto.-Nr. 69922 IBAN: DE30 7016 9464 0000 0699 22, BIC: GENODEFIM07 Ust-ID DE 129 4000 66

E-Mail: info@labor-graner.de Website: www.labor-graner.de

Seite: 1 von 6

Datum: 03.06.2025

Probenbezeichnung: NB 2

Probenahmedatum: 19.05.2025

Labornummer: 2527447X-001a

Material: Feststoff, Gesamtfraktion

Material: Fests	ston, Gesamurak	uon			
	Gehalt	Einheit	BG	Verfahren	
Anteil < 2 mm	54,4	%			
Trockenrückstand	86	%		DIN EN 14346: 2007-03	
Arsen	2,4	mg/kg TS	1	DIN EN 16170: 2017-01	
Blei	7,3	mg/kg TS	0,2	DIN EN 16170: 2017-01	
Cadmium	0,15	mg/kg TS	0,1	DIN EN 16170: 2017-01	
Chrom	23	mg/kg TS	0,2	DIN EN 16170: 2017-01	
Kupfer	9,0	mg/kg TS	0,2	DIN EN 16170: 2017-01	
Nickel	17	mg/kg TS	0,5	DIN EN 16170: 2017-01	
Quecksilber	u.d.B.	mg/kg TS	0,06	DIN EN ISO 12846: 2012-08	
Thallium	u.d.B.	mg/kg TS	0,2	DIN EN 16170: 2017-01	
Zink	36	mg/kg TS	0,2	DIN EN 16170: 2017-01	
TOC	0,30	% TS	0,1	DIN EN 15936: 2012-11	
EOX	u.d.B.	mg/kg TS	0,33	DIN 38414-17: 2017-01	
Kohlenwasserstoffe	u.d.B.	mg/kg TS	50	DIN EN 14039: 2005-01	
Kohlenwasserstoffe C10 - C22	u.d.B.	mg/kg TS	50	DIN EN 14039: 2005-01	
Naphthalin	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Acenaphthylen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Acenaphthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Fluoren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Phenanthren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Benz(a)anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Chrysen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Benzo(b)fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Benzo(k)fluoranthen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Benzo(a)pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Indeno(123-cd)pyren	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Dibenz(ah)anthracen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Benzo(ghi)perylen	u.d.B.	mg/kg TS	0,01	DIN ISO 18287: 2006-05	
Summe PAK nach EBV	n.n.	mg/kg TS		berechnet	

Datum: 03.06.2025

Probenbezeichnung: NB 2

Probenahmedatum: 19.05.2025

Labornummer: 2527447X-001a

Material: Feststoff, Gesamtfraktion

	Gehalt	Einheit	BG	Verfahren
PCB Nr. 28	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 52	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 101	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 153	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 138	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 180	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
PCB Nr. 118	u.d.B.	mg/kg TS	0,005	DIN EN 16167: 2019-06
Summe PCB nach EBV	n.n.	mg/kg TS		berechnet

Seite: 3 von 6

Datum: 03.06.2025

Probenbezeichnung: NB 2

Probenahmedatum: 19.05.2025

Labornummer: 2527447X-001b

Material: Feststoff, Gesamtfraktion

Gehalt Einheit BG Verfahren

	Genail	Ellilleit	DG .	venamen			
Bestimmungen im Eluat - (DIN 19529: 2015-12)							
pH-Wert	8,1			DIN EN ISO 10523: 2012-04			
Leitfähigkeit	190	μS/cm		DIN EN 27888: 1993-11			
Sulfat	4,1	mg/l	2	DIN EN ISO 10304-1: 2009-07			
Arsen	u.d.B.	μg/l	2,5	DIN EN ISO 17294-2: 2017-01			
Blei	u.d.B.	μg/l	2,5	DIN EN ISO 17294-2: 2017-01			
Cadmium	u.d.B.	μg/l	0,5	DIN EN ISO 17294-2: 2017-01			
Chrom	u.d.B.	μg/l	3	DIN EN ISO 17294-2: 2017-01			
Kupfer	u.d.B.	μg/l	6	DIN EN ISO 17294-2: 2017-01			
Nickel	u.d.B.	μg/l	6	DIN EN ISO 17294-2: 2017-01			
Quecksilber	u.d.B.	μg/l	0,03	DIN EN ISO 12846: 2012-08			
Thallium	u.d.B.	μg/l	0,06	DIN EN ISO 17294-2: 2017-01			
Zink	u.d.B.	μg/l	10	DIN EN ISO 17294-2: 2017-01			
Acenaphthylen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Acenaphthen	0,0087	μg/l	0,0085	DIN 38407-39: 2011-09			
Fluoren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Phenanthren	0,032	μg/l	0,0085	DIN 38407-39: 2011-09			
Anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Fluoranthen	0,0087	μg/l	0,0085	DIN 38407-39: 2011-09			
Pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benz(a)anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Chrysen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(b)fluoranthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(k)fluoranthen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(a)pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Indeno(123-cd)pyren	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Dibenz(ah)anthracen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Benzo(ghi)perylen	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
Summe PAK (15) nach EBV	0,0664	μg/l		berechnet			
Naphthalin	0,033	μg/l	0,0085	DIN 38407-39: 2011-09			
2-Methylnaphthalin	u.d.B.	μg/l	0,0085	DIN 38407-39: 2011-09			
1-Methylnaphthalin	0,0094	μg/l	0,0085	DIN 38407-39: 2011-09			
Summe Naphthaline nach EBV	0,04665	μg/l		berechnet			

Datum: 03.06.2025

Probenbezeichnung: NB 2

PCB Nr. 28

PCB Nr. 52

PCB Nr. 180

PCB Nr. 118

19.05.2025 Probenahmedatum:

2527447X-001b Labornummer:

Feststoff, Gesamtfraktion Material:

ВG Gehalt Einheit Verfahren Bestimmungen im Eluat - (DIN 19529: 2015-12) u.d.B. μg/l 0.0009 DIN 38407-37: 2013-11 DIN 38407-37: 2013-11 u.d.B. μg/l 0,0009 PCB Nr. 101 u.d.B. μg/l 0,0009 DIN 38407-37: 2013-11 DIN 38407-37: 2013-11 PCB Nr. 153 u.d.B. μg/l 0.0009 PCB Nr. 138 DIN 38407-37: 2013-11 0,0009 u.d.B. μg/l

0,0009

0,0009

μg/l

μg/l

DIN 38407-37: 2013-11

DIN 38407-37: 2013-11

berechnet Summe PCB nach EBV n.n. μg/l

u.d.B.

u.d.B.

Seite: 5 von 6

Ergänzung zu Prüfbericht 2527447X

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Parameterspezifische Messunsicherheiten sowie Informationen zu deren Berechnung sind auf Anfrage verfügbar. Die aktuelle Liste der flexibel akkreditierten Prüfverfahren kann auf unserer Website eingesehen werden (https://labor-graner.de/unternehmen.html).

Unsachgemäße Probengefäße können zu Verfälschungen der Messwerte führen. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nur mit unserer schriftlichen Genehmigung erlaubt.

BG: Bestimmungsgrenze
KbE: Koloniebildende Einheiten

n.a.: nicht analysierbar n.b.: nicht berechenbar n.n.: nicht nachweisbar

u.d.B.: unter der Bestimmungsgrenze

HS: Headspace

fl./fl.-Extr. flüssig-flüssig-Extraktion

* Fremdvergabe

Isabelle Hopf, Kundenbetreuung